{"title":"MCAFNet: Multiscale cross-modality adaptive fusion network for multispectral object detection","authors":"Shangpo Zheng , Liu Junfeng , Jun Zeng","doi":"10.1016/j.dsp.2025.104996","DOIUrl":null,"url":null,"abstract":"<div><div>Multispectral object detection techniques integrate data from various spectral modalities, such as combining thermal images with RGB visible light images, to enhance the precision a-nd robustness of object detection under diverse environmental c-onditions. Although this approach has improved detection capab-ilities, significant challenges remain in fully leveraging the specif-ic detail information of each single modality and accurately capt-uring cross-modality shared features information. To address th-ese challenges, we propose a Multiscale Cross-modality Adaptive Fusion Network (MCAFNet). This network incorporates Cross- modality interactive Transformer (CMIT) module, Multimodal Adaptive Weighted Fusion (MAWF) module, and a 3D-Integrated Attention Feature Enhancement (3D-IAFE) module. These components work together to comprehensively extract complementary feature between modalities and specific detailed feature within each modality, thereby enhancing the accuracy and robustness of multimodal object detection. Extensive experimental validation and in-depth ablation studies confirm the effectiveness of the proposed method, achieving state-of-the-art detection performance on multiple public datasets.</div></div>","PeriodicalId":51011,"journal":{"name":"Digital Signal Processing","volume":"159 ","pages":"Article 104996"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1051200425000181","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Multispectral object detection techniques integrate data from various spectral modalities, such as combining thermal images with RGB visible light images, to enhance the precision a-nd robustness of object detection under diverse environmental c-onditions. Although this approach has improved detection capab-ilities, significant challenges remain in fully leveraging the specif-ic detail information of each single modality and accurately capt-uring cross-modality shared features information. To address th-ese challenges, we propose a Multiscale Cross-modality Adaptive Fusion Network (MCAFNet). This network incorporates Cross- modality interactive Transformer (CMIT) module, Multimodal Adaptive Weighted Fusion (MAWF) module, and a 3D-Integrated Attention Feature Enhancement (3D-IAFE) module. These components work together to comprehensively extract complementary feature between modalities and specific detailed feature within each modality, thereby enhancing the accuracy and robustness of multimodal object detection. Extensive experimental validation and in-depth ablation studies confirm the effectiveness of the proposed method, achieving state-of-the-art detection performance on multiple public datasets.
期刊介绍:
Digital Signal Processing: A Review Journal is one of the oldest and most established journals in the field of signal processing yet it aims to be the most innovative. The Journal invites top quality research articles at the frontiers of research in all aspects of signal processing. Our objective is to provide a platform for the publication of ground-breaking research in signal processing with both academic and industrial appeal.
The journal has a special emphasis on statistical signal processing methodology such as Bayesian signal processing, and encourages articles on emerging applications of signal processing such as:
• big data• machine learning• internet of things• information security• systems biology and computational biology,• financial time series analysis,• autonomous vehicles,• quantum computing,• neuromorphic engineering,• human-computer interaction and intelligent user interfaces,• environmental signal processing,• geophysical signal processing including seismic signal processing,• chemioinformatics and bioinformatics,• audio, visual and performance arts,• disaster management and prevention,• renewable energy,