{"title":"Investigation of fully coupled wind field simulations in complex terrain wind farms considering automatic upwind control of turbines","authors":"Shuanglong Fan , Zhenqing Liu","doi":"10.1016/j.renene.2024.122146","DOIUrl":null,"url":null,"abstract":"<div><div>The investigation of the wake characteristics of wind turbines in complex topography is essential for optimizing wind energy utilization. This paper presents a fully-coupled simulation method, the Actuator Disk Model with Dynamic Rotation (ADM-DR), for simulating wake flow in wind farms with real terrain. This method integrates automatic upwind and speed control of turbines and utilizes a multi-level grid encryption mode. Its application in wind farms with real terrain is studied in detail and compared with the traditional model, ADM-R (Actuator Disk Model with Rotation). It was observed that for a single wind turbine, the results of the two models regarding wind speed distribution in the wake zone exhibited negligible differences. However, in clustered wind turbine arrangements, the fully-coupled model demonstrated superior applicability compared to the traditional model. It provided more accurate predictions of wake characteristics and the power output of turbines in the rear row. Furthermore, the ADM-DR model's power forecast results were about 15.6 % greater compared to those of the ADM-R model. This underscores the crucial role of accounting for the automatic upwind alignment of wind turbines to accurately evaluate energy production when assessing wind resources for prospective wind farms.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"239 ","pages":"Article 122146"},"PeriodicalIF":9.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960148124022146","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The investigation of the wake characteristics of wind turbines in complex topography is essential for optimizing wind energy utilization. This paper presents a fully-coupled simulation method, the Actuator Disk Model with Dynamic Rotation (ADM-DR), for simulating wake flow in wind farms with real terrain. This method integrates automatic upwind and speed control of turbines and utilizes a multi-level grid encryption mode. Its application in wind farms with real terrain is studied in detail and compared with the traditional model, ADM-R (Actuator Disk Model with Rotation). It was observed that for a single wind turbine, the results of the two models regarding wind speed distribution in the wake zone exhibited negligible differences. However, in clustered wind turbine arrangements, the fully-coupled model demonstrated superior applicability compared to the traditional model. It provided more accurate predictions of wake characteristics and the power output of turbines in the rear row. Furthermore, the ADM-DR model's power forecast results were about 15.6 % greater compared to those of the ADM-R model. This underscores the crucial role of accounting for the automatic upwind alignment of wind turbines to accurately evaluate energy production when assessing wind resources for prospective wind farms.
期刊介绍:
Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices.
As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.