Haifei Chen , Xulei Li , Jian Gao , Jingyu Cao , Hao Dong , Wenjie Wang , Yawei Chen
{"title":"Comparative study on a solar-assisted ground source heat pump with CPC solar collector and phase change heat storage","authors":"Haifei Chen , Xulei Li , Jian Gao , Jingyu Cao , Hao Dong , Wenjie Wang , Yawei Chen","doi":"10.1016/j.renene.2024.122065","DOIUrl":null,"url":null,"abstract":"<div><div>To address the challenges of low solar energy utilization, soil temperature imbalance, and excessive energy consumption in traditional heating systems, a novel solar-assisted ground source heat pump (SAGSHP) with phase change heat storage is proposed. It integrates a compound parabolic concentrator (CPC) solar collector and a buried pipe heat exchanger for combined heating, using RT52, Na₂S₂O₃·5H₂O, and paraffin as phase change materials (PCM) to store excess heat. A TRNSYS model is developed to analyze its performance under different CPC concentration ratios and PCM configurations. Results show that the CPC collector can save approximately 33 % collection area compared to evacuated tube and flat plate collectors, with heat collection efficiencies of 75.5 % and 65.1 % at 2 times and 5 times of the concentration ratios, respectively. The SAGSHP reduces annual energy consumption by about 2000 kWh and improves the average soil temperature stability. The heating time corresponding to RT52, Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>·5H<sub>2</sub>O, and Paraffin is 123.75 h, 80.75 h and 75 h, respectively. The average coefficient of performance of SAGSHP with RT52 reaches 3.096, and the energy consumption is reduced by about 24.3 % after ten-year operation. Results confirms the SAGSHP's potential to enhance heating efficiency, optimize solar energy use, and save energy in long-term operation.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"239 ","pages":"Article 122065"},"PeriodicalIF":9.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960148124021335","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
To address the challenges of low solar energy utilization, soil temperature imbalance, and excessive energy consumption in traditional heating systems, a novel solar-assisted ground source heat pump (SAGSHP) with phase change heat storage is proposed. It integrates a compound parabolic concentrator (CPC) solar collector and a buried pipe heat exchanger for combined heating, using RT52, Na₂S₂O₃·5H₂O, and paraffin as phase change materials (PCM) to store excess heat. A TRNSYS model is developed to analyze its performance under different CPC concentration ratios and PCM configurations. Results show that the CPC collector can save approximately 33 % collection area compared to evacuated tube and flat plate collectors, with heat collection efficiencies of 75.5 % and 65.1 % at 2 times and 5 times of the concentration ratios, respectively. The SAGSHP reduces annual energy consumption by about 2000 kWh and improves the average soil temperature stability. The heating time corresponding to RT52, Na2S2O3·5H2O, and Paraffin is 123.75 h, 80.75 h and 75 h, respectively. The average coefficient of performance of SAGSHP with RT52 reaches 3.096, and the energy consumption is reduced by about 24.3 % after ten-year operation. Results confirms the SAGSHP's potential to enhance heating efficiency, optimize solar energy use, and save energy in long-term operation.
期刊介绍:
Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices.
As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.