Real-bogus scores for active anomaly detection

IF 1.9 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Astronomy and Computing Pub Date : 2024-12-11 DOI:10.1016/j.ascom.2024.100919
T.A. Semenikhin , M.V. Kornilov , M.V. Pruzhinskaya , A.D. Lavrukhina , E. Russeil , E. Gangler , E.E.O. Ishida , V.S. Korolev , K.L. Malanchev , A.A. Volnova , S. Sreejith , SNAD team
{"title":"Real-bogus scores for active anomaly detection","authors":"T.A. Semenikhin ,&nbsp;M.V. Kornilov ,&nbsp;M.V. Pruzhinskaya ,&nbsp;A.D. Lavrukhina ,&nbsp;E. Russeil ,&nbsp;E. Gangler ,&nbsp;E.E.O. Ishida ,&nbsp;V.S. Korolev ,&nbsp;K.L. Malanchev ,&nbsp;A.A. Volnova ,&nbsp;S. Sreejith ,&nbsp;SNAD team","doi":"10.1016/j.ascom.2024.100919","DOIUrl":null,"url":null,"abstract":"<div><div>In the task of anomaly detection in modern time-domain photometric surveys, the primary goal is to identify astrophysically interesting, rare, and unusual objects among a large volume of data. Unfortunately, artifacts — such as plane or satellite tracks, bad columns on CCDs, and ghosts — often constitute significant contaminants in results from anomaly detection analysis. In such contexts, the Active Anomaly Discovery (AAD) algorithm allows tailoring the output of anomaly detection pipelines according to what the expert judges to be scientifically interesting. We demonstrate how the introduction real-bogus scores, obtained from a machine learning classifier, improves the results from AAD. Using labeled data from the SNAD ZTF knowledge database, we train four real-bogus classifiers: XGBoost, CatBoost, Random Forest, and Extremely Randomized Trees. All the models perform real-bogus classification with similar effectiveness, achieving ROC-AUC scores ranging from 0.93 to 0.95. Consequently, we select the Random Forest model as the main model due to its simplicity and interpretability. The Random Forest classifier is applied to 67 million light curves from ZTF DR17. The output real-bogus score is used as an additional feature for two anomaly detection algorithms: static Isolation Forest and AAD. The number of artifacts detected by both algorithms decreases significantly with the inclusion of the real-bogus score in cases where the feature space regions are densely populated with artifacts. However, it remains almost unchanged in scenarios where the overall number of artifacts in the outputs is already small. We conclude that incorporating the real-bogus classifier result as an additional feature in the active anomaly detection pipeline reduces the number of artifacts in the outputs, thereby increasing the incidence of astrophysically interesting objects presented to human experts.</div></div>","PeriodicalId":48757,"journal":{"name":"Astronomy and Computing","volume":"51 ","pages":"Article 100919"},"PeriodicalIF":1.9000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy and Computing","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213133724001343","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

In the task of anomaly detection in modern time-domain photometric surveys, the primary goal is to identify astrophysically interesting, rare, and unusual objects among a large volume of data. Unfortunately, artifacts — such as plane or satellite tracks, bad columns on CCDs, and ghosts — often constitute significant contaminants in results from anomaly detection analysis. In such contexts, the Active Anomaly Discovery (AAD) algorithm allows tailoring the output of anomaly detection pipelines according to what the expert judges to be scientifically interesting. We demonstrate how the introduction real-bogus scores, obtained from a machine learning classifier, improves the results from AAD. Using labeled data from the SNAD ZTF knowledge database, we train four real-bogus classifiers: XGBoost, CatBoost, Random Forest, and Extremely Randomized Trees. All the models perform real-bogus classification with similar effectiveness, achieving ROC-AUC scores ranging from 0.93 to 0.95. Consequently, we select the Random Forest model as the main model due to its simplicity and interpretability. The Random Forest classifier is applied to 67 million light curves from ZTF DR17. The output real-bogus score is used as an additional feature for two anomaly detection algorithms: static Isolation Forest and AAD. The number of artifacts detected by both algorithms decreases significantly with the inclusion of the real-bogus score in cases where the feature space regions are densely populated with artifacts. However, it remains almost unchanged in scenarios where the overall number of artifacts in the outputs is already small. We conclude that incorporating the real-bogus classifier result as an additional feature in the active anomaly detection pipeline reduces the number of artifacts in the outputs, thereby increasing the incidence of astrophysically interesting objects presented to human experts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Astronomy and Computing
Astronomy and Computing ASTRONOMY & ASTROPHYSICSCOMPUTER SCIENCE,-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.10
自引率
8.00%
发文量
67
期刊介绍: Astronomy and Computing is a peer-reviewed journal that focuses on the broad area between astronomy, computer science and information technology. The journal aims to publish the work of scientists and (software) engineers in all aspects of astronomical computing, including the collection, analysis, reduction, visualisation, preservation and dissemination of data, and the development of astronomical software and simulations. The journal covers applications for academic computer science techniques to astronomy, as well as novel applications of information technologies within astronomy.
期刊最新文献
Parameterized Hubble parameter with observational constraints in fractal gravity Illuminating the Moon: Reconstruction of lunar terrain using photogrammetry, Neural Radiance Fields, and Gaussian Splatting Editorial Board A multi-stage machine learning-based method to estimate wind parameters from Hα lines of massive stars Semi-analytical computation of commensurate semimajor axes of resonant orbits including second-order gravitational perturbations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1