Dynamics of periodic orbits in the Copenhagen problem with non-spherical primaries

IF 1.9 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Astronomy and Computing Pub Date : 2025-02-01 DOI:10.1016/j.ascom.2025.100932
O.P. Meena , P. Sachan , R. Pratap , P. Meena
{"title":"Dynamics of periodic orbits in the Copenhagen problem with non-spherical primaries","authors":"O.P. Meena ,&nbsp;P. Sachan ,&nbsp;R. Pratap ,&nbsp;P. Meena","doi":"10.1016/j.ascom.2025.100932","DOIUrl":null,"url":null,"abstract":"<div><div>In the present investigation, we conduct an analysis of periodic orbits within the context of the Copenhagen problem, emphasizing the dynamical behavior of a test particle subjected to the gravitational influence of two primary bodies of equal mass, which are in continuous rotation characterized by a constant angular velocity. By expanding upon the classical framework, we treat the primary bodies as non-spherical entities, thereby introducing the phenomenon of oblateness into the dynamical system under consideration. Employing the methodology of Fourier series, we articulate the characteristics of periodic orbits in proximity to the libration points and systematically evaluate the influence of the orbital parameter <span><math><mi>ɛ</mi></math></span> on the spatial dimensions and temporal periods of these orbits. Through the incorporation of terms extending to the third order in Fourier series method, we present a comprehensive representation of the parameter’s influence on the orbital attributes. The findings indicate that with an increase in <span><math><mi>ɛ</mi></math></span>, the dimensions of periodic orbits experience a substantial expansion, while their temporal periods demonstrate non-linear fluctuations. Variational graphs elucidate the correlation between <span><math><mi>ɛ</mi></math></span> and the time period <span><math><mi>T</mi></math></span>, revealing distinct patterns for the various families of orbits under analysis. Moreover, the oblateness exhibited by the primary bodies engenders significant alterations in the geometrical characteristics, size, and time period of the orbits, thereby underscoring their pivotal influence on the dynamics of orbital motion.</div></div>","PeriodicalId":48757,"journal":{"name":"Astronomy and Computing","volume":"51 ","pages":"Article 100932"},"PeriodicalIF":1.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy and Computing","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213133725000058","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

In the present investigation, we conduct an analysis of periodic orbits within the context of the Copenhagen problem, emphasizing the dynamical behavior of a test particle subjected to the gravitational influence of two primary bodies of equal mass, which are in continuous rotation characterized by a constant angular velocity. By expanding upon the classical framework, we treat the primary bodies as non-spherical entities, thereby introducing the phenomenon of oblateness into the dynamical system under consideration. Employing the methodology of Fourier series, we articulate the characteristics of periodic orbits in proximity to the libration points and systematically evaluate the influence of the orbital parameter ɛ on the spatial dimensions and temporal periods of these orbits. Through the incorporation of terms extending to the third order in Fourier series method, we present a comprehensive representation of the parameter’s influence on the orbital attributes. The findings indicate that with an increase in ɛ, the dimensions of periodic orbits experience a substantial expansion, while their temporal periods demonstrate non-linear fluctuations. Variational graphs elucidate the correlation between ɛ and the time period T, revealing distinct patterns for the various families of orbits under analysis. Moreover, the oblateness exhibited by the primary bodies engenders significant alterations in the geometrical characteristics, size, and time period of the orbits, thereby underscoring their pivotal influence on the dynamics of orbital motion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Astronomy and Computing
Astronomy and Computing ASTRONOMY & ASTROPHYSICSCOMPUTER SCIENCE,-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.10
自引率
8.00%
发文量
67
期刊介绍: Astronomy and Computing is a peer-reviewed journal that focuses on the broad area between astronomy, computer science and information technology. The journal aims to publish the work of scientists and (software) engineers in all aspects of astronomical computing, including the collection, analysis, reduction, visualisation, preservation and dissemination of data, and the development of astronomical software and simulations. The journal covers applications for academic computer science techniques to astronomy, as well as novel applications of information technologies within astronomy.
期刊最新文献
Dynamics of periodic orbits in the Copenhagen problem with non-spherical primaries cosmosage: A natural-language assistant for cosmology Compression method for solar polarization spectra collected from Hinode SOT/SP observations Confirmation of binary clustering in gamma-ray bursts through an integrated p-value from multiple nonparametric tests of hypotheses The influence of spin in black hole triplets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1