{"title":"Dynamics of periodic orbits in the Copenhagen problem with non-spherical primaries","authors":"O.P. Meena , P. Sachan , R. Pratap , P. Meena","doi":"10.1016/j.ascom.2025.100932","DOIUrl":null,"url":null,"abstract":"<div><div>In the present investigation, we conduct an analysis of periodic orbits within the context of the Copenhagen problem, emphasizing the dynamical behavior of a test particle subjected to the gravitational influence of two primary bodies of equal mass, which are in continuous rotation characterized by a constant angular velocity. By expanding upon the classical framework, we treat the primary bodies as non-spherical entities, thereby introducing the phenomenon of oblateness into the dynamical system under consideration. Employing the methodology of Fourier series, we articulate the characteristics of periodic orbits in proximity to the libration points and systematically evaluate the influence of the orbital parameter <span><math><mi>ɛ</mi></math></span> on the spatial dimensions and temporal periods of these orbits. Through the incorporation of terms extending to the third order in Fourier series method, we present a comprehensive representation of the parameter’s influence on the orbital attributes. The findings indicate that with an increase in <span><math><mi>ɛ</mi></math></span>, the dimensions of periodic orbits experience a substantial expansion, while their temporal periods demonstrate non-linear fluctuations. Variational graphs elucidate the correlation between <span><math><mi>ɛ</mi></math></span> and the time period <span><math><mi>T</mi></math></span>, revealing distinct patterns for the various families of orbits under analysis. Moreover, the oblateness exhibited by the primary bodies engenders significant alterations in the geometrical characteristics, size, and time period of the orbits, thereby underscoring their pivotal influence on the dynamics of orbital motion.</div></div>","PeriodicalId":48757,"journal":{"name":"Astronomy and Computing","volume":"51 ","pages":"Article 100932"},"PeriodicalIF":1.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy and Computing","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213133725000058","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
In the present investigation, we conduct an analysis of periodic orbits within the context of the Copenhagen problem, emphasizing the dynamical behavior of a test particle subjected to the gravitational influence of two primary bodies of equal mass, which are in continuous rotation characterized by a constant angular velocity. By expanding upon the classical framework, we treat the primary bodies as non-spherical entities, thereby introducing the phenomenon of oblateness into the dynamical system under consideration. Employing the methodology of Fourier series, we articulate the characteristics of periodic orbits in proximity to the libration points and systematically evaluate the influence of the orbital parameter on the spatial dimensions and temporal periods of these orbits. Through the incorporation of terms extending to the third order in Fourier series method, we present a comprehensive representation of the parameter’s influence on the orbital attributes. The findings indicate that with an increase in , the dimensions of periodic orbits experience a substantial expansion, while their temporal periods demonstrate non-linear fluctuations. Variational graphs elucidate the correlation between and the time period , revealing distinct patterns for the various families of orbits under analysis. Moreover, the oblateness exhibited by the primary bodies engenders significant alterations in the geometrical characteristics, size, and time period of the orbits, thereby underscoring their pivotal influence on the dynamics of orbital motion.
Astronomy and ComputingASTRONOMY & ASTROPHYSICSCOMPUTER SCIENCE,-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.10
自引率
8.00%
发文量
67
期刊介绍:
Astronomy and Computing is a peer-reviewed journal that focuses on the broad area between astronomy, computer science and information technology. The journal aims to publish the work of scientists and (software) engineers in all aspects of astronomical computing, including the collection, analysis, reduction, visualisation, preservation and dissemination of data, and the development of astronomical software and simulations. The journal covers applications for academic computer science techniques to astronomy, as well as novel applications of information technologies within astronomy.