Leveraging nano silica and plant growth promoting rhizobacteria (PGPR) isolated from Gangetic riparian zone to Combat Pendimethalin Toxicity in Brassica juncea

Samarth Sharma, Sneha Tripathi, Kavita Tiwari, Shivani Mahra, Shivesh Sharma
{"title":"Leveraging nano silica and plant growth promoting rhizobacteria (PGPR) isolated from Gangetic riparian zone to Combat Pendimethalin Toxicity in Brassica juncea","authors":"Samarth Sharma,&nbsp;Sneha Tripathi,&nbsp;Kavita Tiwari,&nbsp;Shivani Mahra,&nbsp;Shivesh Sharma","doi":"10.1016/j.plana.2024.100126","DOIUrl":null,"url":null,"abstract":"<div><div>The aim of this study is to explore novel plant growth-promoting rhizobacteria (PGPR) isolated from Gangetic riparian zones and investigates their role in enhancing the resilience of <em>Brassica juncea</em> to pendimethalin toxicity using SiNPs (Silicon nanoparticles). The isolated PGPR was characterized by 16sRNA and its phylogenetic analysis revealed it as <em>Bacillus pulumis.</em> Isolate was examined for its plant growth promotion potential and stress alleviating capabilities. SiNP was utilized as a potential amendment to enhance these effects. <em>Bacillus pulumis</em> showed IAA production, ACC deaminase activity, phosphate solubilisation and siderophore production attributes. Fluorescence microscopy conducted in vivo confirmed the accumulation of reactive oxygen species (ROS), as supported by elevated MDA concentration and reduced membrane permeability. Exposure of <em>Brassica juncea</em> seedlings to 5 μM pendimethalin led to a marked increase in reactive oxygen species (ROS), with superoxide radicals (SOR) rising by 125.58 % and hydrogen peroxide (H₂O₂) by 159.32 % in roots, compared to the control. The combined application of PGPR and SiNP significantly mitigated this stress, reducing SOR and H₂O₂ levels to 27.91 % and 35.59 % respectively. This reduction is linked to enhanced antioxidant defence mechanisms, as the activities of superoxide dismutase (SOD) and catalase (CAT) increased by 22.76 % and 28.38 %, respectively, in root of seedlings co-treated with SiNP and PGPR. Pendimethalin alone reduced dehydroascorbate reductase (DHAR) and monodehydroascorbate reductase (MDAR) activity in roots by 28.95 % and 42.11 %, respectively. However, individual supplementation of SiNP and PGPR mitigated this suppression, with drop in DHAR activity reduced to only 12.63 % and 11.58 %, and MDAR by 17.54 % and 22.81 %, respectively. Co-application of SiNP and PGPR further alleviated this inhibition, limiting DHAR reduction to 9.47 % and MDAR to 3.51 %. This suggests that pendimethalin toxicity causes oxidative stress through disruption of redox balance and over production of ROS and the combined action of SiNP and PGPR enhances the antioxidant system, which likely explains the synergistic effect in alleviating pendimethalin-induced toxicity. The co-application of PGPR and SiNP significantly enhanced plant growth parameters, increased photosynthetic pigment content, improved membrane stability, and reduced lipid peroxidation in both leaves and roots. This research underscores the potential of PGPR and SiNP in sustainable agriculture, particularly in mitigating herbicide-induced stress in crop plants.</div></div>","PeriodicalId":101029,"journal":{"name":"Plant Nano Biology","volume":"11 ","pages":"Article 100126"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Nano Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277311112400069X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this study is to explore novel plant growth-promoting rhizobacteria (PGPR) isolated from Gangetic riparian zones and investigates their role in enhancing the resilience of Brassica juncea to pendimethalin toxicity using SiNPs (Silicon nanoparticles). The isolated PGPR was characterized by 16sRNA and its phylogenetic analysis revealed it as Bacillus pulumis. Isolate was examined for its plant growth promotion potential and stress alleviating capabilities. SiNP was utilized as a potential amendment to enhance these effects. Bacillus pulumis showed IAA production, ACC deaminase activity, phosphate solubilisation and siderophore production attributes. Fluorescence microscopy conducted in vivo confirmed the accumulation of reactive oxygen species (ROS), as supported by elevated MDA concentration and reduced membrane permeability. Exposure of Brassica juncea seedlings to 5 μM pendimethalin led to a marked increase in reactive oxygen species (ROS), with superoxide radicals (SOR) rising by 125.58 % and hydrogen peroxide (H₂O₂) by 159.32 % in roots, compared to the control. The combined application of PGPR and SiNP significantly mitigated this stress, reducing SOR and H₂O₂ levels to 27.91 % and 35.59 % respectively. This reduction is linked to enhanced antioxidant defence mechanisms, as the activities of superoxide dismutase (SOD) and catalase (CAT) increased by 22.76 % and 28.38 %, respectively, in root of seedlings co-treated with SiNP and PGPR. Pendimethalin alone reduced dehydroascorbate reductase (DHAR) and monodehydroascorbate reductase (MDAR) activity in roots by 28.95 % and 42.11 %, respectively. However, individual supplementation of SiNP and PGPR mitigated this suppression, with drop in DHAR activity reduced to only 12.63 % and 11.58 %, and MDAR by 17.54 % and 22.81 %, respectively. Co-application of SiNP and PGPR further alleviated this inhibition, limiting DHAR reduction to 9.47 % and MDAR to 3.51 %. This suggests that pendimethalin toxicity causes oxidative stress through disruption of redox balance and over production of ROS and the combined action of SiNP and PGPR enhances the antioxidant system, which likely explains the synergistic effect in alleviating pendimethalin-induced toxicity. The co-application of PGPR and SiNP significantly enhanced plant growth parameters, increased photosynthetic pigment content, improved membrane stability, and reduced lipid peroxidation in both leaves and roots. This research underscores the potential of PGPR and SiNP in sustainable agriculture, particularly in mitigating herbicide-induced stress in crop plants.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
期刊最新文献
Foliar nano Zn-Mo and chlorine dioxide affects use efficiency and distribution of macronutrients in green bean plants Protective layer β-cyclodextrin within peanut (Arachis hypogaea L.) shells’ nanoparticles enhances intracellular stable fluorescence for bioimaging applications: An in vitro and in silico study Biogenic CuO nanoparticles from Camellia sinensis and Pimpinella anisum plant extracts and their role as antimicrobial agents Harnessing nanotechnology for sustainable agriculture: From seed priming to encapsulation Relative performance of granulated and nano urea on productivity and nitrogen use efficiency of wheat–rice sequence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1