Numerical modelling of the hydrodynamics driven by tidal flooding of the land surface after dyke breaching

Rachel A. Burns , Ryan P. Mulligan , Megan Elliott , Danika van Proosdij , Enda Murphy
{"title":"Numerical modelling of the hydrodynamics driven by tidal flooding of the land surface after dyke breaching","authors":"Rachel A. Burns ,&nbsp;Ryan P. Mulligan ,&nbsp;Megan Elliott ,&nbsp;Danika van Proosdij ,&nbsp;Enda Murphy","doi":"10.1016/j.nbsj.2025.100218","DOIUrl":null,"url":null,"abstract":"<div><div>Managed dyke realignment is a method of creating more coastal wetland environments, by breaching constructed dykes (levees) to allow seawater driven by tides to flood the land surface and enable re-establishment of salt marshes over time. However, coastal land regions that are protected by dykes experience major hydrodynamic changes after breaching. To investigate these dynamics, a dyke in Atlantic Canada was purposefully breached and the adjacent land surface allowed to flood with the tides. Field measurements pre- and post-breach provide a rare opportunity to model the hydrodynamics of early dyke realignment in a hypertidal estuary in the Bay of Fundy. These include measurements of water levels and current velocities at spring tide collected across of field site. A numerical model with an unstructured flexible mesh (Delft3D-FM) was applied to examine the impacts of tidal flooding from a river channel, through the dyke breach and across the previously agricultural landscape that was historically a salt marsh. The model was used to simulate the hydrodynamics inside and around the breach before and after seawater flooding during spring tides, to evaluate the initial impacts of this nature-based method of managed dyke realignment. The results indicate that the breach was not wide enough to influence water levels within the Missaguash River. The depth-averaged current speeds can exceed 1 m <em>s</em><sup>−1</sup> within the breach and are typically &lt;0.3 m <em>s</em><sup>−1</sup> across the flooded area with an average depth of 0.66 m over the simulation period with six tidal cycles. The model results also highlight the importance of high-resolution computational grids and variable bottom roughness for simulating the hydrodynamics of small-scale salt marsh restoration projects. Overall, the results may provide insight to researchers and practitioners in applying nature-based solutions to improve coastal resilience.</div></div>","PeriodicalId":100945,"journal":{"name":"Nature-Based Solutions","volume":"7 ","pages":"Article 100218"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature-Based Solutions","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772411525000084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Managed dyke realignment is a method of creating more coastal wetland environments, by breaching constructed dykes (levees) to allow seawater driven by tides to flood the land surface and enable re-establishment of salt marshes over time. However, coastal land regions that are protected by dykes experience major hydrodynamic changes after breaching. To investigate these dynamics, a dyke in Atlantic Canada was purposefully breached and the adjacent land surface allowed to flood with the tides. Field measurements pre- and post-breach provide a rare opportunity to model the hydrodynamics of early dyke realignment in a hypertidal estuary in the Bay of Fundy. These include measurements of water levels and current velocities at spring tide collected across of field site. A numerical model with an unstructured flexible mesh (Delft3D-FM) was applied to examine the impacts of tidal flooding from a river channel, through the dyke breach and across the previously agricultural landscape that was historically a salt marsh. The model was used to simulate the hydrodynamics inside and around the breach before and after seawater flooding during spring tides, to evaluate the initial impacts of this nature-based method of managed dyke realignment. The results indicate that the breach was not wide enough to influence water levels within the Missaguash River. The depth-averaged current speeds can exceed 1 m s−1 within the breach and are typically <0.3 m s−1 across the flooded area with an average depth of 0.66 m over the simulation period with six tidal cycles. The model results also highlight the importance of high-resolution computational grids and variable bottom roughness for simulating the hydrodynamics of small-scale salt marsh restoration projects. Overall, the results may provide insight to researchers and practitioners in applying nature-based solutions to improve coastal resilience.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of compost and compost-derived biochar on the growth of lettuce irrigated with water and treated wastewater Time in and for nature-based solutions. No quick fix solutions for complex ecological and social processes Numerical modelling of the hydrodynamics driven by tidal flooding of the land surface after dyke breaching Nature-based solutions for climate change adaptation and resilience in urban informal settlements: Insights from kibera, kenya and Villa 20, Argentina A basic study on tree growth and landscape greening in Coastal Urban areas: The case of Hakata port in Fukuoka City, Japan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1