Specific light-regime adaptations, terpenoid profiles and engineering potential in ecologically diverse Phaeodactylum tricornutum strains

IF 4.6 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Algal Research-Biomass Biofuels and Bioproducts Pub Date : 2025-01-12 DOI:10.1016/j.algal.2025.103920
Luca Morelli , Payal Patwari , Florian Pruckner , Maxime Bastide , Michele Fabris
{"title":"Specific light-regime adaptations, terpenoid profiles and engineering potential in ecologically diverse Phaeodactylum tricornutum strains","authors":"Luca Morelli ,&nbsp;Payal Patwari ,&nbsp;Florian Pruckner ,&nbsp;Maxime Bastide ,&nbsp;Michele Fabris","doi":"10.1016/j.algal.2025.103920","DOIUrl":null,"url":null,"abstract":"<div><div>Microalgae, and among them, the diatom <em>Phaeodactylum tricornutum</em> stand out with their remarkable versatility and metabolic engineering potential. Diatoms exhibit substantial variability in metabolism, photosynthetic physiology and environmental adaptation, even across the same species. These factors can affect the design and outcome of metabolic engineering strategies. In this study, we profiled the diversity of biotechnologically relevant traits of three <em>P. tricornutum</em> strains (Pt1, Pt6, and Pt9) under different light regimes to identify the most suitable chassis to be employed as bio-factory to produce high-value terpenoids. We conducted detailed assessments of these strains, using pulse amplitude modulated (PAM) fluorometry to measure photosynthetic efficiency and we analyzed the composition of pigments and triterpenoids, as main terpenoid metabolic sinks. Parameters such as the maximum quantum yield of PSII (Fv/Fm), the efficiency of excitation energy capture (Fv’/Fm'), and OJIP kinetics were used to estimate photosynthetic performance in different light regimes. Additionally, we evaluated their transformation efficiency and their capacity to produce heterologous monoterpenoids, using geraniol as a model product. Our findings revealed that Pt1, widely used in laboratories, exhibits robust growth and photosynthetic performance under standard laboratory conditions. Pt6, adapted to intertidal environments, shows unique resilience in fluctuating conditions, while Pt9, with its high-temperature tolerance, excels under continuous high irradiance. Additionally, this variability across strains and light conditions influenced the metabolic output of each strain. We concluded that understanding the physiological responses of different <em>P. tricornutum</em> strains to light is crucial for optimizing their use in metabolic engineering. The insights gained from this research will facilitate the strategic selection and exploitation of these strains in algae biotechnology, enhancing the production of commercially valuable compounds such as high-value terpenoids and derivatives. This comprehensive characterization of strains under varying light conditions offers a pathway to more efficient and targeted metabolic engineering applications.</div></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":"86 ","pages":"Article 103920"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algal Research-Biomass Biofuels and Bioproducts","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211926425000293","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Microalgae, and among them, the diatom Phaeodactylum tricornutum stand out with their remarkable versatility and metabolic engineering potential. Diatoms exhibit substantial variability in metabolism, photosynthetic physiology and environmental adaptation, even across the same species. These factors can affect the design and outcome of metabolic engineering strategies. In this study, we profiled the diversity of biotechnologically relevant traits of three P. tricornutum strains (Pt1, Pt6, and Pt9) under different light regimes to identify the most suitable chassis to be employed as bio-factory to produce high-value terpenoids. We conducted detailed assessments of these strains, using pulse amplitude modulated (PAM) fluorometry to measure photosynthetic efficiency and we analyzed the composition of pigments and triterpenoids, as main terpenoid metabolic sinks. Parameters such as the maximum quantum yield of PSII (Fv/Fm), the efficiency of excitation energy capture (Fv’/Fm'), and OJIP kinetics were used to estimate photosynthetic performance in different light regimes. Additionally, we evaluated their transformation efficiency and their capacity to produce heterologous monoterpenoids, using geraniol as a model product. Our findings revealed that Pt1, widely used in laboratories, exhibits robust growth and photosynthetic performance under standard laboratory conditions. Pt6, adapted to intertidal environments, shows unique resilience in fluctuating conditions, while Pt9, with its high-temperature tolerance, excels under continuous high irradiance. Additionally, this variability across strains and light conditions influenced the metabolic output of each strain. We concluded that understanding the physiological responses of different P. tricornutum strains to light is crucial for optimizing their use in metabolic engineering. The insights gained from this research will facilitate the strategic selection and exploitation of these strains in algae biotechnology, enhancing the production of commercially valuable compounds such as high-value terpenoids and derivatives. This comprehensive characterization of strains under varying light conditions offers a pathway to more efficient and targeted metabolic engineering applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Algal Research-Biomass Biofuels and Bioproducts
Algal Research-Biomass Biofuels and Bioproducts BIOTECHNOLOGY & APPLIED MICROBIOLOGY-
CiteScore
9.40
自引率
7.80%
发文量
332
期刊介绍: Algal Research is an international phycology journal covering all areas of emerging technologies in algae biology, biomass production, cultivation, harvesting, extraction, bioproducts, biorefinery, engineering, and econometrics. Algae is defined to include cyanobacteria, microalgae, and protists and symbionts of interest in biotechnology. The journal publishes original research and reviews for the following scope: algal biology, including but not exclusive to: phylogeny, biodiversity, molecular traits, metabolic regulation, and genetic engineering, algal cultivation, e.g. phototrophic systems, heterotrophic systems, and mixotrophic systems, algal harvesting and extraction systems, biotechnology to convert algal biomass and components into biofuels and bioproducts, e.g., nutraceuticals, pharmaceuticals, animal feed, plastics, etc. algal products and their economic assessment
期刊最新文献
Discerning promotion mechanisms of fungi Clonostachys rosea on growth of freshwater microalga Chlorella sp. by non-contact culture Chitosan-flocculated Picochlorum maculatum MACC3 as a functional feed for improved growth and health in guppies (Poecilia reticulata) Tetradesmus obliquus organic extracts with antibacterial and antileishmanial activities Enhancing astaxanthin production in Schizochytrium sp.: Insights from orthogonal experiments and transcriptome analysis Regulation of cell cycle-related gene expression by blue light and its effects on the growth and gametogenesis of Saccharina japonica gametophytes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1