Applications of inorganic nutrient enrichment in eucheumatoid seaweed farming: A double-edged sword?

IF 4.6 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Algal Research-Biomass Biofuels and Bioproducts Pub Date : 2025-01-14 DOI:10.1016/j.algal.2025.103922
Albaris B. Tahiluddin , Michael Y. Roleda
{"title":"Applications of inorganic nutrient enrichment in eucheumatoid seaweed farming: A double-edged sword?","authors":"Albaris B. Tahiluddin ,&nbsp;Michael Y. Roleda","doi":"10.1016/j.algal.2025.103922","DOIUrl":null,"url":null,"abstract":"<div><div>Eucheumatoid seaweed farmers face a confluence of challenges emanating from presumed nutrient deficiency due to over-cropping, leading to low yields and frequent ice-ice disease outbreaks. Despite limited data on systemic nutrient limitations, some farmers clandestinely apply commercial inorganic fertilizers to accelerate growth and harvest premature crops after half of the prescribed 45-day cultivation period, sparking controversy. Unlike terrestrial agriculture, the use of inorganic fertilizers in eucheumatoid seaweed farming (ESF) is contentious. This stems from the haphazard use of the term “organic” to classify sea-grown crops without using synthetic fertilizers. However, when anthropogenic inorganic nutrient pollution fertilizes coastal seas, this effectively disqualifies these crops from the “organic” produce classification. This paper critically explores the use of artificial nutrient enrichment in ESF, assessing its impact on the crop's growth, ice-ice disease mitigation, carrageenan quality, and the marine environment. While controlled fundamental studies have shown that nutrient enrichment can significantly increase growth and potentially reduce disease occurrence, its inconsistent positive and negative effects on carrageenan yield and quality require further investigation with emphasis on organismal nutrient physiology and metabolism. Inorganic nutrient enrichment could also potentially alter the microbiome of eucheumatoid seaweeds. Whether inorganic nutrient enrichment in ESF will be sanctioned by the local and global regulators and policy makers, or not, increased knowledge is crucial for establishing basic science in order to rationally discuss challenges contributing to the decreasing production of quality raw, dried, eucheumatoid seaweed biomass for carrageenan processing, without compromising environmental and social responsibilities. Currently, the routine use of inorganic fertilizers in ESF is not authorized and remains a very sensitive issue, especially among marginalized subsistence seaweed farmers. In conclusion, inorganic nutrient enrichment in ESF presents a double-edged sword: whilst it can boost growth and potentially combat disease, its practice raises concerns on carrageenan yield and quality, and environmental pollution, as well as regulatory organic codes, necessitating further research for responsible implementation, when sanctioned. The bottom line is that when prescribed by regulators, the raw dried seaweed (RDS) and the subsequent products (both semi-refined and refined carrageenans) cannot be certified as “organic” when the crop is cultivated using inorganic fertilizers.</div></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":"86 ","pages":"Article 103922"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algal Research-Biomass Biofuels and Bioproducts","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211926425000311","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Eucheumatoid seaweed farmers face a confluence of challenges emanating from presumed nutrient deficiency due to over-cropping, leading to low yields and frequent ice-ice disease outbreaks. Despite limited data on systemic nutrient limitations, some farmers clandestinely apply commercial inorganic fertilizers to accelerate growth and harvest premature crops after half of the prescribed 45-day cultivation period, sparking controversy. Unlike terrestrial agriculture, the use of inorganic fertilizers in eucheumatoid seaweed farming (ESF) is contentious. This stems from the haphazard use of the term “organic” to classify sea-grown crops without using synthetic fertilizers. However, when anthropogenic inorganic nutrient pollution fertilizes coastal seas, this effectively disqualifies these crops from the “organic” produce classification. This paper critically explores the use of artificial nutrient enrichment in ESF, assessing its impact on the crop's growth, ice-ice disease mitigation, carrageenan quality, and the marine environment. While controlled fundamental studies have shown that nutrient enrichment can significantly increase growth and potentially reduce disease occurrence, its inconsistent positive and negative effects on carrageenan yield and quality require further investigation with emphasis on organismal nutrient physiology and metabolism. Inorganic nutrient enrichment could also potentially alter the microbiome of eucheumatoid seaweeds. Whether inorganic nutrient enrichment in ESF will be sanctioned by the local and global regulators and policy makers, or not, increased knowledge is crucial for establishing basic science in order to rationally discuss challenges contributing to the decreasing production of quality raw, dried, eucheumatoid seaweed biomass for carrageenan processing, without compromising environmental and social responsibilities. Currently, the routine use of inorganic fertilizers in ESF is not authorized and remains a very sensitive issue, especially among marginalized subsistence seaweed farmers. In conclusion, inorganic nutrient enrichment in ESF presents a double-edged sword: whilst it can boost growth and potentially combat disease, its practice raises concerns on carrageenan yield and quality, and environmental pollution, as well as regulatory organic codes, necessitating further research for responsible implementation, when sanctioned. The bottom line is that when prescribed by regulators, the raw dried seaweed (RDS) and the subsequent products (both semi-refined and refined carrageenans) cannot be certified as “organic” when the crop is cultivated using inorganic fertilizers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Algal Research-Biomass Biofuels and Bioproducts
Algal Research-Biomass Biofuels and Bioproducts BIOTECHNOLOGY & APPLIED MICROBIOLOGY-
CiteScore
9.40
自引率
7.80%
发文量
332
期刊介绍: Algal Research is an international phycology journal covering all areas of emerging technologies in algae biology, biomass production, cultivation, harvesting, extraction, bioproducts, biorefinery, engineering, and econometrics. Algae is defined to include cyanobacteria, microalgae, and protists and symbionts of interest in biotechnology. The journal publishes original research and reviews for the following scope: algal biology, including but not exclusive to: phylogeny, biodiversity, molecular traits, metabolic regulation, and genetic engineering, algal cultivation, e.g. phototrophic systems, heterotrophic systems, and mixotrophic systems, algal harvesting and extraction systems, biotechnology to convert algal biomass and components into biofuels and bioproducts, e.g., nutraceuticals, pharmaceuticals, animal feed, plastics, etc. algal products and their economic assessment
期刊最新文献
Discerning promotion mechanisms of fungi Clonostachys rosea on growth of freshwater microalga Chlorella sp. by non-contact culture Chitosan-flocculated Picochlorum maculatum MACC3 as a functional feed for improved growth and health in guppies (Poecilia reticulata) Tetradesmus obliquus organic extracts with antibacterial and antileishmanial activities Enhancing astaxanthin production in Schizochytrium sp.: Insights from orthogonal experiments and transcriptome analysis Regulation of cell cycle-related gene expression by blue light and its effects on the growth and gametogenesis of Saccharina japonica gametophytes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1