Digital holography unveils sub-lethal copper doses using motility patterns of Tetraselmis microalgae bioprobes

IF 4.6 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Algal Research-Biomass Biofuels and Bioproducts Pub Date : 2025-01-22 DOI:10.1016/j.algal.2025.103928
Giusy Giugliano , Marika Valentino , Elena Cavalletti , Pasquale Memmolo , Lisa Miccio , Vittorio Bianco , Angela Sardo , Pietro Ferraro
{"title":"Digital holography unveils sub-lethal copper doses using motility patterns of Tetraselmis microalgae bioprobes","authors":"Giusy Giugliano ,&nbsp;Marika Valentino ,&nbsp;Elena Cavalletti ,&nbsp;Pasquale Memmolo ,&nbsp;Lisa Miccio ,&nbsp;Vittorio Bianco ,&nbsp;Angela Sardo ,&nbsp;Pietro Ferraro","doi":"10.1016/j.algal.2025.103928","DOIUrl":null,"url":null,"abstract":"<div><div>The escalating issue of marine pollution stemming from heavy metals, notably copper, demands urgent attention. To effectively address this concern, the development of reliable techniques is critical to accurately assess the impact of contamination on aquatic ecosystems. <em>Tetraselmis</em>, a genus of unicellular and motile green algae, contributes significantly to the regulation of aquatic ecosystems. However, <em>Tetraselmis</em> vital processes and cellular functions may be altered by the presence of copper in marine environments. Its sensitivity to copper pollution allows exploiting <em>Tetraselmis</em> as a bioindicator of toxicity in waters. In fact, elevated concentrations of copper (exceeding 10 μmol) cause <em>Tetraselmis</em> death, a process that can be easily detected using any imaging technique, as the dead microalgae become motionless. In contrast, at lower copper concentrations, this effect is not observable. Here, we demonstrate that <em>Tetraselmis</em> 3D motility is correlated with copper pollution level in water. We leverage refocusing capability and 3D tracking of Digital Holography (DH) to monitor <em>Tetraselmis</em> trajectories and their morphological parameters. We use morphometric and kinematic information to distinguish between different copper doses over various exposure times. We perform both binary and multiclass classifications to analyze the data. In the binary approach, we achieved an accuracy of over 92 % in differentiating <em>Tetraselmis</em> exposed to copper from those unexposed. In the multiclass approach, we successfully identified and classified different sublethal copper doses, achieving an accuracy of over 84 %. These results show that both <em>Tetraselmis</em> motility and morphology can serve as an effective bioindicator for assessing copper pollution in water samples.</div></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":"86 ","pages":"Article 103928"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algal Research-Biomass Biofuels and Bioproducts","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211926425000372","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The escalating issue of marine pollution stemming from heavy metals, notably copper, demands urgent attention. To effectively address this concern, the development of reliable techniques is critical to accurately assess the impact of contamination on aquatic ecosystems. Tetraselmis, a genus of unicellular and motile green algae, contributes significantly to the regulation of aquatic ecosystems. However, Tetraselmis vital processes and cellular functions may be altered by the presence of copper in marine environments. Its sensitivity to copper pollution allows exploiting Tetraselmis as a bioindicator of toxicity in waters. In fact, elevated concentrations of copper (exceeding 10 μmol) cause Tetraselmis death, a process that can be easily detected using any imaging technique, as the dead microalgae become motionless. In contrast, at lower copper concentrations, this effect is not observable. Here, we demonstrate that Tetraselmis 3D motility is correlated with copper pollution level in water. We leverage refocusing capability and 3D tracking of Digital Holography (DH) to monitor Tetraselmis trajectories and their morphological parameters. We use morphometric and kinematic information to distinguish between different copper doses over various exposure times. We perform both binary and multiclass classifications to analyze the data. In the binary approach, we achieved an accuracy of over 92 % in differentiating Tetraselmis exposed to copper from those unexposed. In the multiclass approach, we successfully identified and classified different sublethal copper doses, achieving an accuracy of over 84 %. These results show that both Tetraselmis motility and morphology can serve as an effective bioindicator for assessing copper pollution in water samples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Algal Research-Biomass Biofuels and Bioproducts
Algal Research-Biomass Biofuels and Bioproducts BIOTECHNOLOGY & APPLIED MICROBIOLOGY-
CiteScore
9.40
自引率
7.80%
发文量
332
期刊介绍: Algal Research is an international phycology journal covering all areas of emerging technologies in algae biology, biomass production, cultivation, harvesting, extraction, bioproducts, biorefinery, engineering, and econometrics. Algae is defined to include cyanobacteria, microalgae, and protists and symbionts of interest in biotechnology. The journal publishes original research and reviews for the following scope: algal biology, including but not exclusive to: phylogeny, biodiversity, molecular traits, metabolic regulation, and genetic engineering, algal cultivation, e.g. phototrophic systems, heterotrophic systems, and mixotrophic systems, algal harvesting and extraction systems, biotechnology to convert algal biomass and components into biofuels and bioproducts, e.g., nutraceuticals, pharmaceuticals, animal feed, plastics, etc. algal products and their economic assessment
期刊最新文献
Discerning promotion mechanisms of fungi Clonostachys rosea on growth of freshwater microalga Chlorella sp. by non-contact culture Chitosan-flocculated Picochlorum maculatum MACC3 as a functional feed for improved growth and health in guppies (Poecilia reticulata) Tetradesmus obliquus organic extracts with antibacterial and antileishmanial activities Enhancing astaxanthin production in Schizochytrium sp.: Insights from orthogonal experiments and transcriptome analysis Regulation of cell cycle-related gene expression by blue light and its effects on the growth and gametogenesis of Saccharina japonica gametophytes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1