A 1,8-naphthalimide-triphenylamine based fluorescent turn-on probe for thiophenol detection in water samples and living cells

IF 1.4 4区 化学 Q4 CHEMISTRY, INORGANIC & NUCLEAR Phosphorus, Sulfur, and Silicon and the Related Elements Pub Date : 2024-12-03 DOI:10.1080/10426507.2024.2430544
Xiao Zhang , Fangfang Luo , Le Wang , Mengxia Liu , Wenwen Sun , Yuwei Zhang , Yi Qu
{"title":"A 1,8-naphthalimide-triphenylamine based fluorescent turn-on probe for thiophenol detection in water samples and living cells","authors":"Xiao Zhang ,&nbsp;Fangfang Luo ,&nbsp;Le Wang ,&nbsp;Mengxia Liu ,&nbsp;Wenwen Sun ,&nbsp;Yuwei Zhang ,&nbsp;Yi Qu","doi":"10.1080/10426507.2024.2430544","DOIUrl":null,"url":null,"abstract":"<div><div>Thiophenol and its derivatives pose a significant threat to the environment and biological systems due to their toxic nature. The imperative need for their detection prompted the development of a \"turn-on\" fluorescent probe, NI-TPA-1, incorporating 1,8-naphthalimide-triphenylamine as the emission groups and 2,4-dinitrobenzene as the reactive site. Upon introducing 4-methoxythiophenol (MTP), the fluorescence intensity of NI-TPA-1 exhibited a remarkable 18-fold increase, achieving detection limits as low as 20 nM in aqueous solutions. The photo-induced electron transfer (PET) response mechanism was elucidated through density functional theory (DFT) calculations, providing valuable insights into the sensing mechanism of the probe. Furthermore, the practical applicability of NI-TPA-1 was demonstrated through its successful detection of thiophenol in real water samples. The versatility of the probe was further showcased in living cells imaging, highlighting its potential for <em>in vivo</em> applications. This research not only presents a robust solution for the sensitive and selective detection of thiophenol but also underscores the broader significance of NI-TPA-1 in environmental and biomedical contexts.</div></div>","PeriodicalId":20056,"journal":{"name":"Phosphorus, Sulfur, and Silicon and the Related Elements","volume":"199 10","pages":"Pages 898-906"},"PeriodicalIF":1.4000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phosphorus, Sulfur, and Silicon and the Related Elements","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1042650724000716","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Thiophenol and its derivatives pose a significant threat to the environment and biological systems due to their toxic nature. The imperative need for their detection prompted the development of a "turn-on" fluorescent probe, NI-TPA-1, incorporating 1,8-naphthalimide-triphenylamine as the emission groups and 2,4-dinitrobenzene as the reactive site. Upon introducing 4-methoxythiophenol (MTP), the fluorescence intensity of NI-TPA-1 exhibited a remarkable 18-fold increase, achieving detection limits as low as 20 nM in aqueous solutions. The photo-induced electron transfer (PET) response mechanism was elucidated through density functional theory (DFT) calculations, providing valuable insights into the sensing mechanism of the probe. Furthermore, the practical applicability of NI-TPA-1 was demonstrated through its successful detection of thiophenol in real water samples. The versatility of the probe was further showcased in living cells imaging, highlighting its potential for in vivo applications. This research not only presents a robust solution for the sensitive and selective detection of thiophenol but also underscores the broader significance of NI-TPA-1 in environmental and biomedical contexts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.60
自引率
7.70%
发文量
103
审稿时长
2.1 months
期刊介绍: Phosphorus, Sulfur, and Silicon and the Related Elements is a monthly publication intended to disseminate current trends and novel methods to those working in the broad and interdisciplinary field of heteroatom chemistry.
期刊最新文献
A review on chemical and biological studies of thiopyran derivatives Design and process regulation of CaO-SiO2-MgO-P2O5 based glass fertilizer from direct thermal activation of low-grade phosphate ore and phosphate tailings Analysis of thiosemicarbazones as an effective spectrophotometric chemosensor First comparison of the catalytic stability of cobalt metal, nitride and phosphide catalysts for dry reforming of methane Synthesis and characterization of mesoporous MCM-41 from oil template for effective adsorption of methylene blue dye
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1