A holistic review of the effects of dust buildup on solar photovoltaic panel efficiency

Sufyan Yakubu , Ravi Samikannu , Sidique Gawusu , Samuel Dodobatia Wetajega , Victor Okai , Abdul-Kadir Seini Shaibu , Getachew Adam Workneh
{"title":"A holistic review of the effects of dust buildup on solar photovoltaic panel efficiency","authors":"Sufyan Yakubu ,&nbsp;Ravi Samikannu ,&nbsp;Sidique Gawusu ,&nbsp;Samuel Dodobatia Wetajega ,&nbsp;Victor Okai ,&nbsp;Abdul-Kadir Seini Shaibu ,&nbsp;Getachew Adam Workneh","doi":"10.1016/j.solcom.2024.100101","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding the drivers of photovoltaic system performance is very important in the backdrop of the increasingly significant role that solar energy plays in mitigating carbon emissions. Dust accumulation on surface of photovoltaic panel may result in a high degradation of PVs' efficiency with losses ranging from 10% in mild conditions to over 40% in arid regions. This review systematically explores the effects of dust deposition on PV performance, emphasizing the role of environmental factors such as wind speed, precipitation, humidity, and dust composition. Dust particles impede light transmission, raise cell temperatures, and increase resistive losses, leading to reduced output power. Notable efficiency reductions are linked to specific dust types, such as coal dust (up to 64% losses), fine sand (32%), and gypsum (30%), as highlighted by global case studies. This review further underlines how dust accumulation patterns are influenced by complex interactions of environmental factors such as wind precipitation and humidity. The installation characteristics, such as the height of the panels and their orientation, further exacerbate or mitigate the impact of soiling. This study has been designed to put a great deal of significance on the maximisation of solar PV efficiency, given the critical requirements for global renewable energy targets. It flags some promising cleaning methods and emphasises a holistic approach to the optimisation of PV system design and maintenance practices to empower the widespread adoption of this transformative clean energy solution.</div></div>","PeriodicalId":101173,"journal":{"name":"Solar Compass","volume":"13 ","pages":"Article 100101"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Compass","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772940024000353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the drivers of photovoltaic system performance is very important in the backdrop of the increasingly significant role that solar energy plays in mitigating carbon emissions. Dust accumulation on surface of photovoltaic panel may result in a high degradation of PVs' efficiency with losses ranging from 10% in mild conditions to over 40% in arid regions. This review systematically explores the effects of dust deposition on PV performance, emphasizing the role of environmental factors such as wind speed, precipitation, humidity, and dust composition. Dust particles impede light transmission, raise cell temperatures, and increase resistive losses, leading to reduced output power. Notable efficiency reductions are linked to specific dust types, such as coal dust (up to 64% losses), fine sand (32%), and gypsum (30%), as highlighted by global case studies. This review further underlines how dust accumulation patterns are influenced by complex interactions of environmental factors such as wind precipitation and humidity. The installation characteristics, such as the height of the panels and their orientation, further exacerbate or mitigate the impact of soiling. This study has been designed to put a great deal of significance on the maximisation of solar PV efficiency, given the critical requirements for global renewable energy targets. It flags some promising cleaning methods and emphasises a holistic approach to the optimisation of PV system design and maintenance practices to empower the widespread adoption of this transformative clean energy solution.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental analysis on a solar photovoltaic indoor cooker integrated with an energy storage system: A positive step towards clean cooking transition for Sub-Saharan Africa Comparative analysis of bifacial and monofacial FPV system in the UK Improving optical efficiency of linear Fresnel collectors in the Sahel via position and length adjustment Integral ecology approach to life cycle assessment of solar arrays Study on the comparative performances of the solar stills with two different condensing glass cover shapes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1