Improving B2B customer churn through action rule mining

IF 7.8 1区 管理学 Q1 BUSINESS Industrial Marketing Management Pub Date : 2025-02-01 DOI:10.1016/j.indmarman.2024.12.005
Emil Guliyev, Juliana Sanchez Ramirez, Arno De Caigny, Kristof Coussement
{"title":"Improving B2B customer churn through action rule mining","authors":"Emil Guliyev,&nbsp;Juliana Sanchez Ramirez,&nbsp;Arno De Caigny,&nbsp;Kristof Coussement","doi":"10.1016/j.indmarman.2024.12.005","DOIUrl":null,"url":null,"abstract":"<div><div>Business-to-business (B2B) firms must maintain robust customer bases to ensure recurring revenue. To do so effectively, they should engage in churn prediction. Proactively identifying potential churners and taking proactive retention measures help companies safeguard their revenue streams and build strong, long-lasting relationships with customers, which enhances their sustainability and competitive performance in dynamic, competitive markets. Yet, extant B2B customer churn models often fail to offer truly practical or actionable decision support, such that marketers must rely on their intuition and exert additional effort to define appropriate preventive retention measures. To address this research gap between research models and actionable insights, the current study proposes B2B-ARM, a B2B actionable rule model (ARM), that offers clear action paths for proactive retention management. A real-life case study of a European B2B software company with 6275 contracts provides benchmark evidence that B2B-ARM can detect churn equally well as popular existing prediction models (i.e., decision tree, logistic regression, and naïve Bayes). Furthermore, B2B-ARM provides actionable recommendations, as well as direct remedies to prevent churn, such that marketers save both time and resources. Overall, B2B-ARM is a reliable, efficient, and practical tool for mitigating B2B churn and improving customer retention.</div></div>","PeriodicalId":51345,"journal":{"name":"Industrial Marketing Management","volume":"125 ","pages":"Pages 1-11"},"PeriodicalIF":7.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Marketing Management","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019850124002037","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 0

Abstract

Business-to-business (B2B) firms must maintain robust customer bases to ensure recurring revenue. To do so effectively, they should engage in churn prediction. Proactively identifying potential churners and taking proactive retention measures help companies safeguard their revenue streams and build strong, long-lasting relationships with customers, which enhances their sustainability and competitive performance in dynamic, competitive markets. Yet, extant B2B customer churn models often fail to offer truly practical or actionable decision support, such that marketers must rely on their intuition and exert additional effort to define appropriate preventive retention measures. To address this research gap between research models and actionable insights, the current study proposes B2B-ARM, a B2B actionable rule model (ARM), that offers clear action paths for proactive retention management. A real-life case study of a European B2B software company with 6275 contracts provides benchmark evidence that B2B-ARM can detect churn equally well as popular existing prediction models (i.e., decision tree, logistic regression, and naïve Bayes). Furthermore, B2B-ARM provides actionable recommendations, as well as direct remedies to prevent churn, such that marketers save both time and resources. Overall, B2B-ARM is a reliable, efficient, and practical tool for mitigating B2B churn and improving customer retention.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
17.30
自引率
20.40%
发文量
255
期刊介绍: Industrial Marketing Management delivers theoretical, empirical, and case-based research tailored to the requirements of marketing scholars and practitioners engaged in industrial and business-to-business markets. With an editorial review board comprising prominent international scholars and practitioners, the journal ensures a harmonious blend of theory and practical applications in all articles. Scholars from North America, Europe, Australia/New Zealand, Asia, and various global regions contribute the latest findings to enhance the effectiveness and efficiency of industrial markets. This holistic approach keeps readers informed with the most timely data and contemporary insights essential for informed marketing decisions and strategies in global industrial and business-to-business markets.
期刊最新文献
Not quite alike: Supplier relationship management in B2B marketing and supply chain literature Exiting the space between the rock and the hard place: An integrative managerial approach to tackling burnout in a business context Franchisees' adoption of omnichannel marketing Acquiring cross-border business customers: The roles of relevance and novelty in online communication Extending agency theory in sales management: A systematic literature review and future research agenda
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1