Hanrui Qiu, Chuanming Zhang, Mingjun Wang, Wenxi Tian, G.H. Su
{"title":"Analysis of the influence of bottom flow holes in control rod guide tubes on flow field and control rod displacement","authors":"Hanrui Qiu, Chuanming Zhang, Mingjun Wang, Wenxi Tian, G.H. Su","doi":"10.1016/j.anucene.2024.111028","DOIUrl":null,"url":null,"abstract":"<div><div>During the operation of pressurized water reactors, flow-induced vibration issues are commonly encountered, where control rod components vibrate due to the impact of coolant flow, leading to wear, thereby posing a threat to the safe operation of the reactor. This paper conducts a detailed numerical simulation of the flow field and force distribution inside a full-scale lower control rod guide tube based on the CFD method. The fluid–structure interaction analysis is performed to reveal the influence of cross-flow under various operating conditions on the vibration and displacement of control rods. The research subject consists of 24 control rods, one continuous guide section, and six control rod guide cards. The lower part of the guide tube has two flow holes on each surface, with one assumed to be a cross-flow inlet and the others as outlets. The results indicate that when considering the cross-flow effect at the flow holes, 90 % of the coolant flows out from other flow holes at the bottom of the guide tube, resulting in increased transverse velocity at the bottom and the presence of numerous vortices. The magnitude and location of the force exerted on the control rod by coolant impact are correlated. The control rod closest to the inlet of the flow hole experiences the greatest force, approximately 5.35 times the average at other positions. At a cross-flow velocity of 0.4 m/s and a low frequency of 10 Hz, the maximum displacement of the control rod is 0.3355 mm.</div></div>","PeriodicalId":8006,"journal":{"name":"Annals of Nuclear Energy","volume":"211 ","pages":"Article 111028"},"PeriodicalIF":1.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Nuclear Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306454924006911","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
During the operation of pressurized water reactors, flow-induced vibration issues are commonly encountered, where control rod components vibrate due to the impact of coolant flow, leading to wear, thereby posing a threat to the safe operation of the reactor. This paper conducts a detailed numerical simulation of the flow field and force distribution inside a full-scale lower control rod guide tube based on the CFD method. The fluid–structure interaction analysis is performed to reveal the influence of cross-flow under various operating conditions on the vibration and displacement of control rods. The research subject consists of 24 control rods, one continuous guide section, and six control rod guide cards. The lower part of the guide tube has two flow holes on each surface, with one assumed to be a cross-flow inlet and the others as outlets. The results indicate that when considering the cross-flow effect at the flow holes, 90 % of the coolant flows out from other flow holes at the bottom of the guide tube, resulting in increased transverse velocity at the bottom and the presence of numerous vortices. The magnitude and location of the force exerted on the control rod by coolant impact are correlated. The control rod closest to the inlet of the flow hole experiences the greatest force, approximately 5.35 times the average at other positions. At a cross-flow velocity of 0.4 m/s and a low frequency of 10 Hz, the maximum displacement of the control rod is 0.3355 mm.
期刊介绍:
Annals of Nuclear Energy provides an international medium for the communication of original research, ideas and developments in all areas of the field of nuclear energy science and technology. Its scope embraces nuclear fuel reserves, fuel cycles and cost, materials, processing, system and component technology (fission only), design and optimization, direct conversion of nuclear energy sources, environmental control, reactor physics, heat transfer and fluid dynamics, structural analysis, fuel management, future developments, nuclear fuel and safety, nuclear aerosol, neutron physics, computer technology (both software and hardware), risk assessment, radioactive waste disposal and reactor thermal hydraulics. Papers submitted to Annals need to demonstrate a clear link to nuclear power generation/nuclear engineering. Papers which deal with pure nuclear physics, pure health physics, imaging, or attenuation and shielding properties of concretes and various geological materials are not within the scope of the journal. Also, papers that deal with policy or economics are not within the scope of the journal.