In vitro and in silico Anti-diabetes mechanism of phytochemicals from Curculigo pilosa and its pharmacokinetic profiling via α-amylase inhibition

Damilola A. Omoboyowa , Temitope C. Aribigbola , Simbo T. Akinsulure , Damilola S. Bodun , Ezekiel A. Olugbogi , Ebenezer A. Oni
{"title":"In vitro and in silico Anti-diabetes mechanism of phytochemicals from Curculigo pilosa and its pharmacokinetic profiling via α-amylase inhibition","authors":"Damilola A. Omoboyowa ,&nbsp;Temitope C. Aribigbola ,&nbsp;Simbo T. Akinsulure ,&nbsp;Damilola S. Bodun ,&nbsp;Ezekiel A. Olugbogi ,&nbsp;Ebenezer A. Oni","doi":"10.1016/j.amolm.2025.100064","DOIUrl":null,"url":null,"abstract":"<div><div>Diabetes mellitus is characterized by elevated blood glucose resulting from carbohydrate metabolism via glucose metabolizing enzymes such as α-amylase. <em>Curculigo pilosa</em> is traditionally used as herbal medication as anti-diabetes therapy but its mechanism of action is yet to be explored. This study investigates α-amylase inhibitory potential of <em>C. pilosa</em> using in vitro and in silico approaches. The ethylacetate, n-butanol and methanol extracts of <em>C. pilosa</em> were subjected to in vitro α-amylase inhibitory assay, followed by identification of the bioactive compounds from the most potent extract using HPLC. Integrated computational analyses were performed on ten (10) active compounds against α-amylase using Maestro Schrodinger (v2). The results of the in vitro α–amylase assay revealed n-butanol extract as the potent extract with IC<sub>50</sub> of 132.70 μg/mL, although the standard drug (acarbose IC<sub>50</sub> = 128.70 μg/mL) inhibits α-amylase better than the extracts. The HPLC result revealed the presence of ten (10) active compounds. Acarbose was observed to possess better binding affinity (−11.502 kcal/mol) than all the compounds but curculigoside was the hit compound with binding affinity of −8.797 kcal/mol. Some of the compounds showed appreciable inhibitory pIC<sub>50</sub> and fitness scores comparable to the standard drug. The pharmacokinetic profile revealed that none of the compounds violated more than one Lipinski's rule of five while the standard drug (acarbose) violated three (3) of the rules. The root mean square deviation shows reasonable level of stability within the simulation period for both curculigoside and acarbose. The result of in silico study showed significant inhibitory potential of the active compounds against α-amylase which was consistent with the in vitro inhibition of α amylase by the plant extract suggesting this as the possible mechanism of antidiabetes action of <em>C. pilosa</em>.</div></div>","PeriodicalId":72320,"journal":{"name":"Aspects of molecular medicine","volume":"5 ","pages":"Article 100064"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aspects of molecular medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949688825000024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Diabetes mellitus is characterized by elevated blood glucose resulting from carbohydrate metabolism via glucose metabolizing enzymes such as α-amylase. Curculigo pilosa is traditionally used as herbal medication as anti-diabetes therapy but its mechanism of action is yet to be explored. This study investigates α-amylase inhibitory potential of C. pilosa using in vitro and in silico approaches. The ethylacetate, n-butanol and methanol extracts of C. pilosa were subjected to in vitro α-amylase inhibitory assay, followed by identification of the bioactive compounds from the most potent extract using HPLC. Integrated computational analyses were performed on ten (10) active compounds against α-amylase using Maestro Schrodinger (v2). The results of the in vitro α–amylase assay revealed n-butanol extract as the potent extract with IC50 of 132.70 μg/mL, although the standard drug (acarbose IC50 = 128.70 μg/mL) inhibits α-amylase better than the extracts. The HPLC result revealed the presence of ten (10) active compounds. Acarbose was observed to possess better binding affinity (−11.502 kcal/mol) than all the compounds but curculigoside was the hit compound with binding affinity of −8.797 kcal/mol. Some of the compounds showed appreciable inhibitory pIC50 and fitness scores comparable to the standard drug. The pharmacokinetic profile revealed that none of the compounds violated more than one Lipinski's rule of five while the standard drug (acarbose) violated three (3) of the rules. The root mean square deviation shows reasonable level of stability within the simulation period for both curculigoside and acarbose. The result of in silico study showed significant inhibitory potential of the active compounds against α-amylase which was consistent with the in vitro inhibition of α amylase by the plant extract suggesting this as the possible mechanism of antidiabetes action of C. pilosa.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Aspects of molecular medicine
Aspects of molecular medicine Molecular Biology, Molecular Medicine
自引率
0.00%
发文量
0
审稿时长
38 days
期刊最新文献
Prevalence of pathogenic genetic variants associated with familial hypercholesterolemia in Ghanaian children Chalcone-related small molecules as potent antibacterial and antifungal agents: Design, synthesis, In vitro, and computational approaches In vitro and in silico Anti-diabetes mechanism of phytochemicals from Curculigo pilosa and its pharmacokinetic profiling via α-amylase inhibition Role of antioxidants in skin aging and the molecular mechanism of ROS: A comprehensive review Stimuli-responsive supramolecular hydrogels for paclitaxel delivery: Progress and prospects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1