Enhanced thermoelectric properties in Bi2Sr2-xBaxCo2Oy via doping and texturing for integration in more efficient thermoelectric generators

IF 3.4 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Solid State Sciences Pub Date : 2025-01-01 DOI:10.1016/j.solidstatesciences.2024.107772
Pınar Özkurt , M.A. Madre , Berdan Özkurt , M.A. Torres , A. Sotelo
{"title":"Enhanced thermoelectric properties in Bi2Sr2-xBaxCo2Oy via doping and texturing for integration in more efficient thermoelectric generators","authors":"Pınar Özkurt ,&nbsp;M.A. Madre ,&nbsp;Berdan Özkurt ,&nbsp;M.A. Torres ,&nbsp;A. Sotelo","doi":"10.1016/j.solidstatesciences.2024.107772","DOIUrl":null,"url":null,"abstract":"<div><div>Bi<sub>2</sub>Sr<sub>2-x</sub>Ba<sub>x</sub>Co<sub>2</sub>O<sub>y</sub> (0 ≤ x ≤ 0.15) thermoelectric samples have been sintered, and textured through the laser floating zone process using a Nd:YAG laser. Powder XRD studies showed that the thermoelectric phase is the major one in all cases, with higher amount of secondary phases in the textured ones due to their incongruent melting. Microstructural characterization revealed a drastic microstructural modification in the textured samples, when compared to the sintered ones, producing much larger and well oriented grains along the growth direction. These characteristics led to lower electrical resistivity in textured samples, reaching the minimum at 650 °C (14.8 mΩ cm) in 0.125Ba-doped samples, which is lower than those typically reported in this system. On the other hand, no significant variation in Seebeck coefficient has been found between the samples. This behaviour is associated to the isovalent doping which does not modify the charge carrier concentration in the material, and the highest values at 650 °C (166 μV/K) are in the order of the reported in the literature. As a consequence, power factor values are mainly driven by the electrical resistivity values, leading to the highest values at 650 °C in 0.125Ba-doped textured samples (0.19 mW/K<sup>2</sup>m) due to their lowest resistivity. These values are higher than the reported for textured materials and in the order of the best reported for this compound in bulk form. All these properties, together with the possibility of the direct integration of these compounds in thermoelectric modules, make them very attractive for practical applications ensuring access to affordable, reliable, and sustainable energy for all.</div></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":"159 ","pages":"Article 107772"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Sciences","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1293255824003376","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Bi2Sr2-xBaxCo2Oy (0 ≤ x ≤ 0.15) thermoelectric samples have been sintered, and textured through the laser floating zone process using a Nd:YAG laser. Powder XRD studies showed that the thermoelectric phase is the major one in all cases, with higher amount of secondary phases in the textured ones due to their incongruent melting. Microstructural characterization revealed a drastic microstructural modification in the textured samples, when compared to the sintered ones, producing much larger and well oriented grains along the growth direction. These characteristics led to lower electrical resistivity in textured samples, reaching the minimum at 650 °C (14.8 mΩ cm) in 0.125Ba-doped samples, which is lower than those typically reported in this system. On the other hand, no significant variation in Seebeck coefficient has been found between the samples. This behaviour is associated to the isovalent doping which does not modify the charge carrier concentration in the material, and the highest values at 650 °C (166 μV/K) are in the order of the reported in the literature. As a consequence, power factor values are mainly driven by the electrical resistivity values, leading to the highest values at 650 °C in 0.125Ba-doped textured samples (0.19 mW/K2m) due to their lowest resistivity. These values are higher than the reported for textured materials and in the order of the best reported for this compound in bulk form. All these properties, together with the possibility of the direct integration of these compounds in thermoelectric modules, make them very attractive for practical applications ensuring access to affordable, reliable, and sustainable energy for all.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Solid State Sciences
Solid State Sciences 化学-无机化学与核化学
CiteScore
6.60
自引率
2.90%
发文量
214
审稿时长
27 days
期刊介绍: Solid State Sciences is the journal for researchers from the broad solid state chemistry and physics community. It publishes key articles on all aspects of solid state synthesis, structure-property relationships, theory and functionalities, in relation with experiments. Key topics for stand-alone papers and special issues: -Novel ways of synthesis, inorganic functional materials, including porous and glassy materials, hybrid organic-inorganic compounds and nanomaterials -Physical properties, emphasizing but not limited to the electrical, magnetical and optical features -Materials related to information technology and energy and environmental sciences. The journal publishes feature articles from experts in the field upon invitation. Solid State Sciences - your gateway to energy-related materials.
期刊最新文献
Synthesis and characterization of P-doped g-C3N4/CuBi2O4 as a new heterogeneous nanocomposite for photocatalytic reduction of nitroaromatic compounds Insights on the electrooxidation of formaldehyde over bimetallic Co2V2O7 nanorod and its implication towards water electrolysis Thermoelectric properties of Zn/Sc codoped GeTe prepared by melt-spinning method Anchoring of liquid crystal molecules on multi-walled carbon nanotubes and their effects on enhanced photoluminescence dynamics, fluorescence decay and distinctive electrical properties Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1