Optimal operation of multi-plant steam district heating systems for enhanced efficiency and sustainability

IF 9.9 1区 工程技术 Q1 ENERGY & FUELS Energy Conversion and Management Pub Date : 2025-02-01 DOI:10.1016/j.enconman.2024.119298
Saranya Anbarasu , Kathryn Hinkelman , Wangda Zuo , Victor Mendez Ferreira
{"title":"Optimal operation of multi-plant steam district heating systems for enhanced efficiency and sustainability","authors":"Saranya Anbarasu ,&nbsp;Kathryn Hinkelman ,&nbsp;Wangda Zuo ,&nbsp;Victor Mendez Ferreira","doi":"10.1016/j.enconman.2024.119298","DOIUrl":null,"url":null,"abstract":"<div><div>Despite their crucial role in supplying heat and power to universities, industries, and healthcare facilities, many steam-based district heating systems rely on outdated control methods. Among these, multi-central plant districts are particularly challenging due to the complexities of coordinating multiple plants, optimizing load distributions, and managing system downtime. In response, new operational strategies are developed to enhance the efficiency and sustainability of steam districts while utilizing existing resources. These strategies include reducing plant operational pressure without compromising the reliable supply to buildings and optimizing load allocation across multiple plants. The load allocation considers boiler part-load efficiency, runtime, network losses, and building pressure set points, and is compared with traditional multi-boiler controls. To support this exploration, new dynamic Modelica models are developed. In addition, methods to reduce modeling complexities are incorporated, enhancing their suitability for practical applications. A holistic district-wide analysis using a real university case study demonstrates a 4.7% fuel savings by lowering boiler operational pressure from 900 kPa to 600 kPa, along with a 13.3% reduction in condensation losses across the distribution network. Furthermore, the load allocation approach results in a 13.1% reduction in fuel consumption during peak winter periods and 15.3% during shoulder periods, with corresponding decreases in carbon emissions and fuel costs. This approach can also save maintenance costs by reducing the boiler runtime by 49.6%. This research underscores the benefits of retrofitting aging steam district heating systems, offering immediate operational improvements by enhancing efficiency, meeting regulatory compliance, and extending infrastructure lifespans while delaying costly overhauls.</div></div>","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":"325 ","pages":"Article 119298"},"PeriodicalIF":9.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196890424012391","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Despite their crucial role in supplying heat and power to universities, industries, and healthcare facilities, many steam-based district heating systems rely on outdated control methods. Among these, multi-central plant districts are particularly challenging due to the complexities of coordinating multiple plants, optimizing load distributions, and managing system downtime. In response, new operational strategies are developed to enhance the efficiency and sustainability of steam districts while utilizing existing resources. These strategies include reducing plant operational pressure without compromising the reliable supply to buildings and optimizing load allocation across multiple plants. The load allocation considers boiler part-load efficiency, runtime, network losses, and building pressure set points, and is compared with traditional multi-boiler controls. To support this exploration, new dynamic Modelica models are developed. In addition, methods to reduce modeling complexities are incorporated, enhancing their suitability for practical applications. A holistic district-wide analysis using a real university case study demonstrates a 4.7% fuel savings by lowering boiler operational pressure from 900 kPa to 600 kPa, along with a 13.3% reduction in condensation losses across the distribution network. Furthermore, the load allocation approach results in a 13.1% reduction in fuel consumption during peak winter periods and 15.3% during shoulder periods, with corresponding decreases in carbon emissions and fuel costs. This approach can also save maintenance costs by reducing the boiler runtime by 49.6%. This research underscores the benefits of retrofitting aging steam district heating systems, offering immediate operational improvements by enhancing efficiency, meeting regulatory compliance, and extending infrastructure lifespans while delaying costly overhauls.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy Conversion and Management
Energy Conversion and Management 工程技术-力学
CiteScore
19.00
自引率
11.50%
发文量
1304
审稿时长
17 days
期刊介绍: The journal Energy Conversion and Management provides a forum for publishing original contributions and comprehensive technical review articles of interdisciplinary and original research on all important energy topics. The topics considered include energy generation, utilization, conversion, storage, transmission, conservation, management and sustainability. These topics typically involve various types of energy such as mechanical, thermal, nuclear, chemical, electromagnetic, magnetic and electric. These energy types cover all known energy resources, including renewable resources (e.g., solar, bio, hydro, wind, geothermal and ocean energy), fossil fuels and nuclear resources.
期刊最新文献
Editorial Board Advancements in biodiesel production from castor oil: A comprehensive review Energy, exergy, economic, and environmental analysis of waste heat source heat pump industrial steam generation system Clustered carbon capture as a technologically and economically viable concept for industrial post-combustion CO2 capture Towards intelligent management of regional building energy systems: A framework combined with deep reinforcement learning for hybrid energy storage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1