Axelle Larrieu , William Lafargue-Dit-Hauret , Pierre Marcasuzaa , Didier Bégué , Laurent Billon
{"title":"Paving the way toward reactive self-assembly-induced colloidal covalent organic frameworks: Elaboration of macromolecular growth-blocking agents","authors":"Axelle Larrieu , William Lafargue-Dit-Hauret , Pierre Marcasuzaa , Didier Bégué , Laurent Billon","doi":"10.1016/j.eurpolymj.2024.113711","DOIUrl":null,"url":null,"abstract":"<div><div>Herein, we develop an original strategy to limit rapid precipitation in solution of Covalent Organic Frameworks (COFs), permitting both the control of their morphology and processing. The enhance COF dispersibility can be implemented and controlled by growth-blocking macromolecular agent concepts. This macromolecular agent limits the growth of COFs and stabilized the COF in a colloidal shape. We propose the synthesis of a hydrophilic end-chain functional Poly(DiMethylAmino)Ethyl MethAcrylate (PDMAEMA) as a macromolecular growth-blocking agent, designed to stabilize imine-COF in aqueous media. Its reactivity with a tri-functional imine-COF blockbuilder (Tpa) is investigated <em>via</em> two different strategies: <em>grafting from</em> and <em>grafting to</em>. This concept is followed by several characterization techniques in solution and in solid states. Depending on the PDMAEMA/Tpa ratios and the grafting strategy, several populations, from mono- to tri-functionalized Tpa are synthesized, and the colloids size and morphology can be tuned. A concomitant DFT calculations provide a better understanding of the self-assembly of the building blocks, shedding the light on the Tpa stacking effects. This study finally provides a first step toward the synthesis of electrostatically/sterically stabilized colloidal COF in water media, for photo hydrogen evolution reaction.</div></div>","PeriodicalId":315,"journal":{"name":"European Polymer Journal","volume":"224 ","pages":"Article 113711"},"PeriodicalIF":5.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014305724009728","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Herein, we develop an original strategy to limit rapid precipitation in solution of Covalent Organic Frameworks (COFs), permitting both the control of their morphology and processing. The enhance COF dispersibility can be implemented and controlled by growth-blocking macromolecular agent concepts. This macromolecular agent limits the growth of COFs and stabilized the COF in a colloidal shape. We propose the synthesis of a hydrophilic end-chain functional Poly(DiMethylAmino)Ethyl MethAcrylate (PDMAEMA) as a macromolecular growth-blocking agent, designed to stabilize imine-COF in aqueous media. Its reactivity with a tri-functional imine-COF blockbuilder (Tpa) is investigated via two different strategies: grafting from and grafting to. This concept is followed by several characterization techniques in solution and in solid states. Depending on the PDMAEMA/Tpa ratios and the grafting strategy, several populations, from mono- to tri-functionalized Tpa are synthesized, and the colloids size and morphology can be tuned. A concomitant DFT calculations provide a better understanding of the self-assembly of the building blocks, shedding the light on the Tpa stacking effects. This study finally provides a first step toward the synthesis of electrostatically/sterically stabilized colloidal COF in water media, for photo hydrogen evolution reaction.
期刊介绍:
European Polymer Journal is dedicated to publishing work on fundamental and applied polymer chemistry and macromolecular materials. The journal covers all aspects of polymer synthesis, including polymerization mechanisms and chemical functional transformations, with a focus on novel polymers and the relationships between molecular structure and polymer properties. In addition, we welcome submissions on bio-based or renewable polymers, stimuli-responsive systems and polymer bio-hybrids. European Polymer Journal also publishes research on the biomedical application of polymers, including drug delivery and regenerative medicine. The main scope is covered but not limited to the following core research areas:
Polymer synthesis and functionalization
• Novel synthetic routes for polymerization, functional modification, controlled/living polymerization and precision polymers.
Stimuli-responsive polymers
• Including shape memory and self-healing polymers.
Supramolecular polymers and self-assembly
• Molecular recognition and higher order polymer structures.
Renewable and sustainable polymers
• Bio-based, biodegradable and anti-microbial polymers and polymeric bio-nanocomposites.
Polymers at interfaces and surfaces
• Chemistry and engineering of surfaces with biological relevance, including patterning, antifouling polymers and polymers for membrane applications.
Biomedical applications and nanomedicine
• Polymers for regenerative medicine, drug delivery molecular release and gene therapy
The scope of European Polymer Journal no longer includes Polymer Physics.