Climbing loose surfaces with steep slopes using a small, lightweight push-rolling rover with minimal configuration

IF 2.4 3区 工程技术 Q3 ENGINEERING, ENVIRONMENTAL Journal of Terramechanics Pub Date : 2025-01-06 DOI:10.1016/j.jterra.2024.101043
Daisuke Fujiwara , Qingze He , Kojiro Iizuka
{"title":"Climbing loose surfaces with steep slopes using a small, lightweight push-rolling rover with minimal configuration","authors":"Daisuke Fujiwara ,&nbsp;Qingze He ,&nbsp;Kojiro Iizuka","doi":"10.1016/j.jterra.2024.101043","DOIUrl":null,"url":null,"abstract":"<div><div>Owing to the payload limitations, some organizations are focusing on small, lightweight wheeled rovers for planetary exploration. Planetary and lunar surfaces feature weak soils and slopes that pose mobility challenges for wheeled rovers. Studies have shown that push–pull locomotion can improve climbing ability. Such rovers lock one pair of wheels relative to the ground while driving the other like an inchworm. Conventional rovers have large masses ranging from 10 to nearly 1,000 kg. However, some studies are now focusing on small rovers of masses from under 1 kg to 20 kg. For such rovers, traveling on granular surfaces with steep slopes and low slips remains an experimental challenge. This study develops a small, lightweight push-rolling rover and evaluates its ability to climb steep slopes. To meet size requirements, the rover uses a minimal configuration. Experiments to measure resistance and drawbar pull forces during push-rolling revealed that a lugged wheel and dynamic sinking behavior using an intentional slip increased the total thrust forces. Additionally, travel experiments showed that the developed rover, with its optimal configuration, demonstrated a high climbing ability on slopes greater than 30°.</div></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":"118 ","pages":"Article 101043"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Terramechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022489824000855","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Owing to the payload limitations, some organizations are focusing on small, lightweight wheeled rovers for planetary exploration. Planetary and lunar surfaces feature weak soils and slopes that pose mobility challenges for wheeled rovers. Studies have shown that push–pull locomotion can improve climbing ability. Such rovers lock one pair of wheels relative to the ground while driving the other like an inchworm. Conventional rovers have large masses ranging from 10 to nearly 1,000 kg. However, some studies are now focusing on small rovers of masses from under 1 kg to 20 kg. For such rovers, traveling on granular surfaces with steep slopes and low slips remains an experimental challenge. This study develops a small, lightweight push-rolling rover and evaluates its ability to climb steep slopes. To meet size requirements, the rover uses a minimal configuration. Experiments to measure resistance and drawbar pull forces during push-rolling revealed that a lugged wheel and dynamic sinking behavior using an intentional slip increased the total thrust forces. Additionally, travel experiments showed that the developed rover, with its optimal configuration, demonstrated a high climbing ability on slopes greater than 30°.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Terramechanics
Journal of Terramechanics 工程技术-工程:环境
CiteScore
5.90
自引率
8.30%
发文量
33
审稿时长
15.3 weeks
期刊介绍: The Journal of Terramechanics is primarily devoted to scientific articles concerned with research, design, and equipment utilization in the field of terramechanics. The Journal of Terramechanics is the leading international journal serving the multidisciplinary global off-road vehicle and soil working machinery industries, and related user community, governmental agencies and universities. The Journal of Terramechanics provides a forum for those involved in research, development, design, innovation, testing, application and utilization of off-road vehicles and soil working machinery, and their sub-systems and components. The Journal presents a cross-section of technical papers, reviews, comments and discussions, and serves as a medium for recording recent progress in the field.
期刊最新文献
Editorial Board Effects of grain breakage on hydraulic conductivity in granular soils under one-dimensional compression Climbing loose surfaces with steep slopes using a small, lightweight push-rolling rover with minimal configuration Effect of vertical load on track traction under different soil moisture content Editorial: Best papers of the ISTVS 2023 conference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1