Hand-aware graph convolution network for skeleton-based sign language recognition

Juan Song , Huixuechun Wang , Jianan Li , Jian Zheng , Zhifu Zhao , Qingshan Li
{"title":"Hand-aware graph convolution network for skeleton-based sign language recognition","authors":"Juan Song ,&nbsp;Huixuechun Wang ,&nbsp;Jianan Li ,&nbsp;Jian Zheng ,&nbsp;Zhifu Zhao ,&nbsp;Qingshan Li","doi":"10.1016/j.jiixd.2024.08.001","DOIUrl":null,"url":null,"abstract":"<div><div>Skeleton-based sign language recognition (SLR) is a challenging research area mainly due to the fast and complex hand movement. Currently, graph convolution networks (GCNs) have been employed in skeleton-based SLR and achieved remarkable performance. However, existing GCN-based SLR methods suffer from a lack of explicit attention to hand topology which plays an important role in the sign language representation. To address this issue, we propose a novel hand-aware graph convolution network (HA-GCN) to focus on hand topological relationships of skeleton graph. Specifically, a hand-aware graph convolution layer is designed to capture both global body and local hand information, in which two sub-graphs are defined and incorporated to represent hand topology information. In addition, in order to eliminate the over-fitting problem, an adaptive DropGraph is designed in construction of hand-aware graph convolution block to remove the spatial and temporal redundancy in the sign language representation. With the aim to further improve the performance, the joints information, bones, together with their motion information are simultaneously modeled in a multi-stream framework. Extensive experiments on the two open-source datasets, AUTSL and INCLUDE, demonstrate that our proposed algorithm outperforms the state-of-the-art with a significant margin. Our code is available at <span><span>https://github.com/snorlaxse/HA-SLR-GCN</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":100790,"journal":{"name":"Journal of Information and Intelligence","volume":"3 1","pages":"Pages 36-50"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information and Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S294971592400074X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Skeleton-based sign language recognition (SLR) is a challenging research area mainly due to the fast and complex hand movement. Currently, graph convolution networks (GCNs) have been employed in skeleton-based SLR and achieved remarkable performance. However, existing GCN-based SLR methods suffer from a lack of explicit attention to hand topology which plays an important role in the sign language representation. To address this issue, we propose a novel hand-aware graph convolution network (HA-GCN) to focus on hand topological relationships of skeleton graph. Specifically, a hand-aware graph convolution layer is designed to capture both global body and local hand information, in which two sub-graphs are defined and incorporated to represent hand topology information. In addition, in order to eliminate the over-fitting problem, an adaptive DropGraph is designed in construction of hand-aware graph convolution block to remove the spatial and temporal redundancy in the sign language representation. With the aim to further improve the performance, the joints information, bones, together with their motion information are simultaneously modeled in a multi-stream framework. Extensive experiments on the two open-source datasets, AUTSL and INCLUDE, demonstrate that our proposed algorithm outperforms the state-of-the-art with a significant margin. Our code is available at https://github.com/snorlaxse/HA-SLR-GCN.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial Board Editorial Board Boosting brain-computer interface performance through cognitive training: A brain-centric approach Hand-aware graph convolution network for skeleton-based sign language recognition Composite fixed-length ordered features with index-of-max transformation for high-performing and secure palmprint template protection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1