Two new analytical models for heat transport in ground-coupled heat pump system with heat loss at ground surface: A new meshless treatment of ground heat exchanger for reflecting heat capacity effect

IF 3.5 2区 工程技术 Q3 ENERGY & FUELS Geothermics Pub Date : 2025-01-20 DOI:10.1016/j.geothermics.2025.103258
Chenyang Tang , Hund-Der Yeh , Ching-Sheng Huang
{"title":"Two new analytical models for heat transport in ground-coupled heat pump system with heat loss at ground surface: A new meshless treatment of ground heat exchanger for reflecting heat capacity effect","authors":"Chenyang Tang ,&nbsp;Hund-Der Yeh ,&nbsp;Ching-Sheng Huang","doi":"10.1016/j.geothermics.2025.103258","DOIUrl":null,"url":null,"abstract":"<div><div>Existing boundary conditions or source terms specified at cylindrical ground heat exchangers (GHEs) in ground-coupled heat pump (GCHP) systems neglect the effect of GHE heat capacity. This study modifies a governing equation as a new meshless GHE treatment reflecting the effect by the product of a coefficient and temperature time derivative. Two new analytical models are developed for depicting heat transport in a GCHP system with heat loss at the ground surface. The two-zone model adopts two coupled governing equations describing heat transport in the GHE and soil formation zones. The single-zone model applies the new GHE treatment for the GHE zone with the governing equation for the formation zone. Analytical solutions of the models are derived; finite element solutions are built to release analytical solutions’ assumption of the same thermal property of the GHE and formation below the GHE. Results suggest the coefficient equals the half product of the GHE density, specific heat, and square of its radius divided by its thermal conductivity. Both analytical solutions agree to temperature within 6.2 % relative difference and 5 % for most time of a heating or cooling season, applicable to most GHEs. One finite element solution with the new meshless GHE treatment takes about 1 % of the computing time of acquiring the other finite element solution based on the governing equation and fine GHE discretization. The assumption causes 10.6 % relative error in temperature at the GHE bottom, but the error dramatically decreases below 5 % elsewhere. The present solution applies to a field GCHP experiment. In conclusion, this study may provide a better understanding of GCHP systems and useful approach for field applications.</div></div>","PeriodicalId":55095,"journal":{"name":"Geothermics","volume":"127 ","pages":"Article 103258"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geothermics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375650525000100","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Existing boundary conditions or source terms specified at cylindrical ground heat exchangers (GHEs) in ground-coupled heat pump (GCHP) systems neglect the effect of GHE heat capacity. This study modifies a governing equation as a new meshless GHE treatment reflecting the effect by the product of a coefficient and temperature time derivative. Two new analytical models are developed for depicting heat transport in a GCHP system with heat loss at the ground surface. The two-zone model adopts two coupled governing equations describing heat transport in the GHE and soil formation zones. The single-zone model applies the new GHE treatment for the GHE zone with the governing equation for the formation zone. Analytical solutions of the models are derived; finite element solutions are built to release analytical solutions’ assumption of the same thermal property of the GHE and formation below the GHE. Results suggest the coefficient equals the half product of the GHE density, specific heat, and square of its radius divided by its thermal conductivity. Both analytical solutions agree to temperature within 6.2 % relative difference and 5 % for most time of a heating or cooling season, applicable to most GHEs. One finite element solution with the new meshless GHE treatment takes about 1 % of the computing time of acquiring the other finite element solution based on the governing equation and fine GHE discretization. The assumption causes 10.6 % relative error in temperature at the GHE bottom, but the error dramatically decreases below 5 % elsewhere. The present solution applies to a field GCHP experiment. In conclusion, this study may provide a better understanding of GCHP systems and useful approach for field applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Geothermics
Geothermics 工程技术-地球科学综合
CiteScore
7.70
自引率
15.40%
发文量
237
审稿时长
4.5 months
期刊介绍: Geothermics is an international journal devoted to the research and development of geothermal energy. The International Board of Editors of Geothermics, which comprises specialists in the various aspects of geothermal resources, exploration and development, guarantees the balanced, comprehensive view of scientific and technological developments in this promising energy field. It promulgates the state of the art and science of geothermal energy, its exploration and exploitation through a regular exchange of information from all parts of the world. The journal publishes articles dealing with the theory, exploration techniques and all aspects of the utilization of geothermal resources. Geothermics serves as the scientific house, or exchange medium, through which the growing community of geothermal specialists can provide and receive information.
期刊最新文献
Gas equilibrium in the H2O-H2-CO2-CO-CH4 system for wet-steam geothermal-well fluids and their sources: A case study from Krafla, Iceland Assessment of geothermal waters in Yunnan, China: Distribution, quality and driving factors Heat extraction performance and techno-economic analysis of a deep U-type borehole heat exchanger under intermittent operation Editorial Board Design of silica nanoparticle tracers with optimized dispersion stability, sorption and deposition properties based on (X)DLVO and filtration theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1