Salidroside attenuates cognitive deficits induced by chronic cerebral hypoperfusion via modulating microglial phenotypic transformation in mice

IF 2.9 4区 医学 Q3 IMMUNOLOGY Journal of neuroimmunology Pub Date : 2025-01-31 DOI:10.1016/j.jneuroim.2025.578544
Weiwei Ji , Zengyu Zhang , Tingyu Jin , Danyang Meng , Xuyou Zhou , Jin Hu , Yong Wang
{"title":"Salidroside attenuates cognitive deficits induced by chronic cerebral hypoperfusion via modulating microglial phenotypic transformation in mice","authors":"Weiwei Ji ,&nbsp;Zengyu Zhang ,&nbsp;Tingyu Jin ,&nbsp;Danyang Meng ,&nbsp;Xuyou Zhou ,&nbsp;Jin Hu ,&nbsp;Yong Wang","doi":"10.1016/j.jneuroim.2025.578544","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Chronic cerebral hypoperfusion (CCH) is a significant contributor to vascular cognitive impairment (VCI), often linked to cortical and hippocampal damage. This study investigates the therapeutic potential of salidroside (SLDS) in mitigating CCH-induced brain injury by modulating microglial activation and inflammatory responses.</div></div><div><h3>Methods</h3><div>We established a CCH model in mice using the 0.16/0.18 mm bilateral common carotid artery stenosis (BCAS) procedure. We assessed cerebral blood flow (CBF) via laser speckle contrast imaging, while neuropathology was evaluated through Nissl staining and immunofluorescence (IF) experiments. Cognitive deficits were measured using the Morris water maze test. Neuronal apoptosis and neuroinflammation were examined through IF, ELISA, and qRT-PCR.</div></div><div><h3>Results</h3><div>BCAS-induced hypoperfusion resulted in a marked reduction in CBF, increased neuronal apoptosis, and significant cognitive deficits. SLDS treatment effectively countered these effects by shifting microglial polarization from a pro-inflammatory M1 phenotype to an anti-inflammatory M2 phenotype, reducing pro-inflammatory cytokine levels, and enhancing neuronal survival.</div></div><div><h3>Conclusion</h3><div>SLDS demonstrates strong neuroprotective potential against CCH-induced brain injury by reducing inflammation and preventing neuronal apoptosis. These findings highlight the promise of SLDS as a therapeutic agent for chronic cerebrovascular disorders, warranting further investigation into its molecular mechanisms and clinical applicability.</div></div>","PeriodicalId":16671,"journal":{"name":"Journal of neuroimmunology","volume":"400 ","pages":"Article 578544"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neuroimmunology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165572825000244","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Chronic cerebral hypoperfusion (CCH) is a significant contributor to vascular cognitive impairment (VCI), often linked to cortical and hippocampal damage. This study investigates the therapeutic potential of salidroside (SLDS) in mitigating CCH-induced brain injury by modulating microglial activation and inflammatory responses.

Methods

We established a CCH model in mice using the 0.16/0.18 mm bilateral common carotid artery stenosis (BCAS) procedure. We assessed cerebral blood flow (CBF) via laser speckle contrast imaging, while neuropathology was evaluated through Nissl staining and immunofluorescence (IF) experiments. Cognitive deficits were measured using the Morris water maze test. Neuronal apoptosis and neuroinflammation were examined through IF, ELISA, and qRT-PCR.

Results

BCAS-induced hypoperfusion resulted in a marked reduction in CBF, increased neuronal apoptosis, and significant cognitive deficits. SLDS treatment effectively countered these effects by shifting microglial polarization from a pro-inflammatory M1 phenotype to an anti-inflammatory M2 phenotype, reducing pro-inflammatory cytokine levels, and enhancing neuronal survival.

Conclusion

SLDS demonstrates strong neuroprotective potential against CCH-induced brain injury by reducing inflammation and preventing neuronal apoptosis. These findings highlight the promise of SLDS as a therapeutic agent for chronic cerebrovascular disorders, warranting further investigation into its molecular mechanisms and clinical applicability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of neuroimmunology
Journal of neuroimmunology 医学-免疫学
CiteScore
6.10
自引率
3.00%
发文量
154
审稿时长
37 days
期刊介绍: The Journal of Neuroimmunology affords a forum for the publication of works applying immunologic methodology to the furtherance of the neurological sciences. Studies on all branches of the neurosciences, particularly fundamental and applied neurobiology, neurology, neuropathology, neurochemistry, neurovirology, neuroendocrinology, neuromuscular research, neuropharmacology and psychology, which involve either immunologic methodology (e.g. immunocytochemistry) or fundamental immunology (e.g. antibody and lymphocyte assays), are considered for publication.
期刊最新文献
Editorial Board Acute corticosteroid-responsive post-infection myositis in adults Clinical and neuroimaging findings of patients with glial fibrillary acidic protein-immunoglobulin G-like anti-astrocytic antibodies in cerebrospinal fluid Salidroside attenuates cognitive deficits induced by chronic cerebral hypoperfusion via modulating microglial phenotypic transformation in mice Predictors of visual outcome in optic neuropathy of sarcoidosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1