Lithofacies types, sedimentary cycles, and facies models of saline lacustrine hybrid sedimentary rocks: A case study of Neogene in Fengxi area, Qaidam Basin, NW China

IF 7 Q1 ENERGY & FUELS Petroleum Exploration and Development Pub Date : 2024-12-01 DOI:10.1016/S1876-3804(25)60556-8
Guangyong SONG , Zhanguo LIU , Yanqing WANG , Guohui LONG , Chao ZHU , Senming LI , Mingzhi TIAN , Qi SHI , Zhiyuan XIA , Qingshun GONG
{"title":"Lithofacies types, sedimentary cycles, and facies models of saline lacustrine hybrid sedimentary rocks: A case study of Neogene in Fengxi area, Qaidam Basin, NW China","authors":"Guangyong SONG ,&nbsp;Zhanguo LIU ,&nbsp;Yanqing WANG ,&nbsp;Guohui LONG ,&nbsp;Chao ZHU ,&nbsp;Senming LI ,&nbsp;Mingzhi TIAN ,&nbsp;Qi SHI ,&nbsp;Zhiyuan XIA ,&nbsp;Qingshun GONG","doi":"10.1016/S1876-3804(25)60556-8","DOIUrl":null,"url":null,"abstract":"<div><div>The saline lacustrine hybrid sedimentary rocks are complex in lithology and unknown for their sedimentary mechanisms. The hybrid sedimentary rocks samples from the Neogene upper Ganchaigou Formation to lower Youshashan Formation (N<sub>1</sub>–N<sub>2</sub><sup>1</sup>) in the Fengxi area Qaidam Basin, were investigated through core-log and petrology-geochemistry cross-analysis by using the core, casting thin section, scanning electron microscope, X-ray diffraction, logging, and carbon/oxygen isotopic data. The hybrid sedimentary rocks in the Fengxi area, including terrigenous clastic rock and lacustrine carbonate rock, were deposited in a shallow lake environment far from the source, or occasionally in a semi-deep lake environment, with 5 lithofacies types and 6 microfacies types recognized. Stable carbon and oxygen isotopic compositions reveal that the formation of sedimentary cycles is controlled by a climate-driven compensation-undercompensation cyclic mechanism. A sedimentary cycle model of hybrid sedimentary rocks in an arid and saline setting is proposed. According to this model, in the compensation period, the lake level rises sharply, and microfacies such as mud flat, sand-mud flat and beach are developed, with physical subsidence as the dominant sedimentary mechanism; in the undercompensation period, the lake level falls slowly, and microfacies such as lime-mud flat, lime-dolomite flat and algal mound/mat are developed, with chemical-biological process as the dominant sedimentary mechanism. In the saline lacustrine sedimentary system, lacustrine carbonate rock is mainly formed along with regression, the facies change is not interpreted by the accommodation believed traditionally, but controlled by the temporary fluctuation of lake water chemistry caused by climate change. The research results update the interpreted high-resolution sequence model and genesis of hybrid sedimentary rocks in the saline lacustrine basin and provide a valuable guidance for exploring unconventional hydrocarbons of saline lacustrine facies.</div></div>","PeriodicalId":67426,"journal":{"name":"Petroleum Exploration and Development","volume":"51 6","pages":"Pages 1507-1520"},"PeriodicalIF":7.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Exploration and Development","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876380425605568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The saline lacustrine hybrid sedimentary rocks are complex in lithology and unknown for their sedimentary mechanisms. The hybrid sedimentary rocks samples from the Neogene upper Ganchaigou Formation to lower Youshashan Formation (N1–N21) in the Fengxi area Qaidam Basin, were investigated through core-log and petrology-geochemistry cross-analysis by using the core, casting thin section, scanning electron microscope, X-ray diffraction, logging, and carbon/oxygen isotopic data. The hybrid sedimentary rocks in the Fengxi area, including terrigenous clastic rock and lacustrine carbonate rock, were deposited in a shallow lake environment far from the source, or occasionally in a semi-deep lake environment, with 5 lithofacies types and 6 microfacies types recognized. Stable carbon and oxygen isotopic compositions reveal that the formation of sedimentary cycles is controlled by a climate-driven compensation-undercompensation cyclic mechanism. A sedimentary cycle model of hybrid sedimentary rocks in an arid and saline setting is proposed. According to this model, in the compensation period, the lake level rises sharply, and microfacies such as mud flat, sand-mud flat and beach are developed, with physical subsidence as the dominant sedimentary mechanism; in the undercompensation period, the lake level falls slowly, and microfacies such as lime-mud flat, lime-dolomite flat and algal mound/mat are developed, with chemical-biological process as the dominant sedimentary mechanism. In the saline lacustrine sedimentary system, lacustrine carbonate rock is mainly formed along with regression, the facies change is not interpreted by the accommodation believed traditionally, but controlled by the temporary fluctuation of lake water chemistry caused by climate change. The research results update the interpreted high-resolution sequence model and genesis of hybrid sedimentary rocks in the saline lacustrine basin and provide a valuable guidance for exploring unconventional hydrocarbons of saline lacustrine facies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.50
自引率
0.00%
发文量
473
期刊最新文献
Theories and applications of phase-change related rock mechanics in oil and gas reservoirs Control of structure and fluid on ultra-deep fault-controlled carbonate fracture-vug reservoirs in the Tarim Basin, NW China Phase behavior of CO2-shale oil in nanopores An intelligent separated zone oil production technology based on electromagnetic coupling principle Oil production characteristics and CO2 storage mechanisms of CO2 flooding in ultra-low permeability sandstone oil reservoirs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1