A simple model for longitudinal electron transport during and after laser excitation: Emergence of electron resistive transport

IF 2.3 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Physics Letters A Pub Date : 2025-01-28 DOI:10.1016/j.physleta.2024.130153
Robert Meadows , Y. Xue , Nicholas Allbritton , G.P. Zhang
{"title":"A simple model for longitudinal electron transport during and after laser excitation: Emergence of electron resistive transport","authors":"Robert Meadows ,&nbsp;Y. Xue ,&nbsp;Nicholas Allbritton ,&nbsp;G.P. Zhang","doi":"10.1016/j.physleta.2024.130153","DOIUrl":null,"url":null,"abstract":"<div><div>Laser-driven electron transport across a sample has garnered enormous attentions over several decades, as it provides a much faster way to control electron dynamics. Light is an electromagnetic wave, so how and why an electron can acquire a longitudinal velocity remains unanswered. Here we show that it is the magnetic field that steers the electron to the light propagation direction. But, quantitatively, our free-electron model is still unable to reproduce the experimental velocities. Going beyond the free electron mode and assuming the system absorbs all the photon energy, the theoretical velocity matches the experimental observation. We introduce a concept of the resistive transport, where electrons deaccelerate under a constant resistance after laser excitation. This theory finally explains why the experimental distance-versus-time forms a down-concave curve, and unifies ballistic and superdiffusive transports into a single resistive transport. We expect that our finding will motivate further investigations.</div></div>","PeriodicalId":20172,"journal":{"name":"Physics Letters A","volume":"531 ","pages":"Article 130153"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters A","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375960124008478","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Laser-driven electron transport across a sample has garnered enormous attentions over several decades, as it provides a much faster way to control electron dynamics. Light is an electromagnetic wave, so how and why an electron can acquire a longitudinal velocity remains unanswered. Here we show that it is the magnetic field that steers the electron to the light propagation direction. But, quantitatively, our free-electron model is still unable to reproduce the experimental velocities. Going beyond the free electron mode and assuming the system absorbs all the photon energy, the theoretical velocity matches the experimental observation. We introduce a concept of the resistive transport, where electrons deaccelerate under a constant resistance after laser excitation. This theory finally explains why the experimental distance-versus-time forms a down-concave curve, and unifies ballistic and superdiffusive transports into a single resistive transport. We expect that our finding will motivate further investigations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Physics Letters A
Physics Letters A 物理-物理:综合
CiteScore
5.10
自引率
3.80%
发文量
493
审稿时长
30 days
期刊介绍: Physics Letters A offers an exciting publication outlet for novel and frontier physics. It encourages the submission of new research on: condensed matter physics, theoretical physics, nonlinear science, statistical physics, mathematical and computational physics, general and cross-disciplinary physics (including foundations), atomic, molecular and cluster physics, plasma and fluid physics, optical physics, biological physics and nanoscience. No articles on High Energy and Nuclear Physics are published in Physics Letters A. The journal''s high standard and wide dissemination ensures a broad readership amongst the physics community. Rapid publication times and flexible length restrictions give Physics Letters A the edge over other journals in the field.
期刊最新文献
Editorial Board Soliton solutions to time-fractional nonlinear Schrödinger equation with cubic-quintic-septimal in weakly nonlocal media Decomposable dynamics on matrix algebras Modeling study of pedestrian evacuation considering dynamic guidance under terrorist attack events The impact of reputation-driven locally variable synergy factors on public goods games
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1