Evaluating the global thiols redox state in living cells using a reducing sulfur species responsive fluorescence switching platform

IF 9.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Chinese Chemical Letters Pub Date : 2024-10-10 DOI:10.1016/j.cclet.2024.110528
Hui Zhang , Rong Feng , Wanyi Yu , Hongbei Wei , Tianhong Wu , Peng Zhang , Wenhai Bian , Xin Li , Di Gao , Guojun Weng , Zhe Yang , Tony D. James , Xiaolong Sun
{"title":"Evaluating the global thiols redox state in living cells using a reducing sulfur species responsive fluorescence switching platform","authors":"Hui Zhang ,&nbsp;Rong Feng ,&nbsp;Wanyi Yu ,&nbsp;Hongbei Wei ,&nbsp;Tianhong Wu ,&nbsp;Peng Zhang ,&nbsp;Wenhai Bian ,&nbsp;Xin Li ,&nbsp;Di Gao ,&nbsp;Guojun Weng ,&nbsp;Zhe Yang ,&nbsp;Tony D. James ,&nbsp;Xiaolong Sun","doi":"10.1016/j.cclet.2024.110528","DOIUrl":null,"url":null,"abstract":"<div><div>Redox dyshomeostasis is a critical factor in the initiation of numerous diseases, making the accurate evaluation of the redox status of the cellular environment an important aspect of physiological research. However, maintaining redox homeostasis relies on a complex and dynamic physiological system involving multiple substrate-enzyme interactions, so its accurately detection remains a challenge. With this research, we developed an activable fluorescence switching platform by incorporating different conjugate acceptors to a fluorophore using ester bonds and resulting in fluorescence quenching due to donor-excited photo-induced electron transfer (<em>d</em>-PeT), which was confirmed through density functional theory calculations. The reaction-based probe was deployed for recognizing all major intracellular reducing sulfur species (RSS), including H<sub>2</sub>S, cysteine (Cys), homocysteine (Hcy), glutathione (GSH), and protein free thiols. The quenched fluorescence was significantly recovered by RSS, through releasing the fluorophore and diminishing the <em>d</em>-PeT effect. Furthermore, the fluorescent probe was used for the sensing and imaging RSS in living cells, demonstrating good cell-permeability, low cytotoxicity, and negative correlation with reactive oxygen species content, enabling the evaluating of global thiols redox state in HepG2 cellular lines during ferroptosis processes.</div></div>","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"36 4","pages":"Article 110528"},"PeriodicalIF":9.4000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Chemical Letters","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001841724010465","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Redox dyshomeostasis is a critical factor in the initiation of numerous diseases, making the accurate evaluation of the redox status of the cellular environment an important aspect of physiological research. However, maintaining redox homeostasis relies on a complex and dynamic physiological system involving multiple substrate-enzyme interactions, so its accurately detection remains a challenge. With this research, we developed an activable fluorescence switching platform by incorporating different conjugate acceptors to a fluorophore using ester bonds and resulting in fluorescence quenching due to donor-excited photo-induced electron transfer (d-PeT), which was confirmed through density functional theory calculations. The reaction-based probe was deployed for recognizing all major intracellular reducing sulfur species (RSS), including H2S, cysteine (Cys), homocysteine (Hcy), glutathione (GSH), and protein free thiols. The quenched fluorescence was significantly recovered by RSS, through releasing the fluorophore and diminishing the d-PeT effect. Furthermore, the fluorescent probe was used for the sensing and imaging RSS in living cells, demonstrating good cell-permeability, low cytotoxicity, and negative correlation with reactive oxygen species content, enabling the evaluating of global thiols redox state in HepG2 cellular lines during ferroptosis processes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Chinese Chemical Letters
Chinese Chemical Letters 化学-化学综合
CiteScore
14.10
自引率
15.40%
发文量
8969
审稿时长
1.6 months
期刊介绍: Chinese Chemical Letters (CCL) (ISSN 1001-8417) was founded in July 1990. The journal publishes preliminary accounts in the whole field of chemistry, including inorganic chemistry, organic chemistry, analytical chemistry, physical chemistry, polymer chemistry, applied chemistry, etc.Chinese Chemical Letters does not accept articles previously published or scheduled to be published. To verify originality, your article may be checked by the originality detection service CrossCheck.
期刊最新文献
Graphical Abstracts IFC - Editorial Board/ Publication info Graphical Abstracts IFC - Editorial Board/ Publication info Corrigendum to “A concise formal stereoselective total synthesis of (–)-swainsonine” [Chin Chem Lett 25 (2014) 193–196]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1