Improving generative trajectory prediction via collision-free modeling and goal scene reconstruction

IF 3.3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pattern Recognition Letters Pub Date : 2025-02-01 DOI:10.1016/j.patrec.2024.12.004
Zhaoxin Su , Gang Huang , Zhou Zhou , Yongfu Li , Sanyuan Zhang , Wei Hua
{"title":"Improving generative trajectory prediction via collision-free modeling and goal scene reconstruction","authors":"Zhaoxin Su ,&nbsp;Gang Huang ,&nbsp;Zhou Zhou ,&nbsp;Yongfu Li ,&nbsp;Sanyuan Zhang ,&nbsp;Wei Hua","doi":"10.1016/j.patrec.2024.12.004","DOIUrl":null,"url":null,"abstract":"<div><div>In the context of bird’s-eye view traffic scenarios, accurate prediction of future trajectories for various traffic agents (e.g., pedestrians, vehicles) is crucial for driving safety and decision planning. In this paper, we present a generative trajectory prediction framework that incorporates both collision-free modeling and additional reconstruction for future scene context. For the social encoder, we leverage the collision prior by incorporating collision-free constraints (CFC). We construct a social model composed of multiple graphs, where each graph points to the collision prior calculated from uniform direction sampling. In the scene encoder, we employ an attention module to establish connections between trajectory motion and all scene image pixels. Additionally, we reconstruct a goal response map (GRM) aligned with the intended one, thereby enhancing the scene representations. Experiments conducted on nuScenes and ETH/UCY datasets demonstrate the superiority of the proposed framework, achieving a 13.8% reduction in off-road rate on nuScenes and an average 13.2% reduction in collision rate on ETH/UCY datasets.</div></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"188 ","pages":"Pages 117-124"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167865524003593","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In the context of bird’s-eye view traffic scenarios, accurate prediction of future trajectories for various traffic agents (e.g., pedestrians, vehicles) is crucial for driving safety and decision planning. In this paper, we present a generative trajectory prediction framework that incorporates both collision-free modeling and additional reconstruction for future scene context. For the social encoder, we leverage the collision prior by incorporating collision-free constraints (CFC). We construct a social model composed of multiple graphs, where each graph points to the collision prior calculated from uniform direction sampling. In the scene encoder, we employ an attention module to establish connections between trajectory motion and all scene image pixels. Additionally, we reconstruct a goal response map (GRM) aligned with the intended one, thereby enhancing the scene representations. Experiments conducted on nuScenes and ETH/UCY datasets demonstrate the superiority of the proposed framework, achieving a 13.8% reduction in off-road rate on nuScenes and an average 13.2% reduction in collision rate on ETH/UCY datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过无碰撞建模和目标场景重建改进生成轨迹预测
在鸟瞰交通场景的背景下,准确预测各种交通主体(如行人、车辆)的未来轨迹对驾驶安全和决策规划至关重要。在本文中,我们提出了一个生成式轨迹预测框架,该框架结合了无碰撞建模和未来场景上下文的额外重建。对于社交编码器,我们通过合并无碰撞约束(CFC)来利用碰撞先验。我们构建了一个由多个图组成的社会模型,其中每个图指向由均匀方向采样计算的碰撞先验。在场景编码器中,我们使用了一个注意力模块来建立轨迹运动和所有场景图像像素之间的联系。此外,我们重建了一个与目标响应图对齐的目标响应图(GRM),从而增强了场景表示。在nuScenes和ETH/UCY数据集上进行的实验证明了该框架的优越性,在nuScenes上实现了13.8%的越野率降低,在ETH/UCY数据集上平均降低了13.2%的碰撞率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Pattern Recognition Letters
Pattern Recognition Letters 工程技术-计算机:人工智能
CiteScore
12.40
自引率
5.90%
发文量
287
审稿时长
9.1 months
期刊介绍: Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition. Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.
期刊最新文献
Editorial Board Choroid plexus segmentation in MRI using the novel T1×FLAIR modality and PSU-Mamba: projective scan U-Mamba approach Data augmentation in time series forecasting through inverted framework Underwater image color correction via global-local collaborative strategy Voxel-MPI: Scene-adaptive multiplane images based local voxel tokenization with attention coordination for 3D scene representation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1