Long-lived seismic instability of a large intraplate brittle shear zone revealed by distributed slip zones and paleoseismic frictional melt, eastern Botswana
{"title":"Long-lived seismic instability of a large intraplate brittle shear zone revealed by distributed slip zones and paleoseismic frictional melt, eastern Botswana","authors":"Debbie Mfa , Folarin Kolawole , Boniface Kgosidintsi , Rasheed Ajala , Elisha Shemang","doi":"10.1016/j.jsg.2024.105324","DOIUrl":null,"url":null,"abstract":"<div><div>In cratonic interiors, long-lived brittle shear zones host records of polyphase deformation, representing inherited structures that can host damaging earthquakes. Here, we explore the internal structure of the Kgomodikae Shear Zone (KSZ), signifying the western continuation of the ∼800-km long Precambrian Kgomodikae-Thabazimbi-Murchinson Fault System which extend along a region of widespread seismicity in southern Africa. At satellite-scale, the KSZ exhibits ENE-to-NE-striking subparallel zones of alternating high/low lineament clustering intensities, with peak-intensity zones that represent hydrologically-permeable principal brittle shear bands. In outcrops, we find pervasive occurrence of slip surfaces with dominant strike-slip paleo-slip vectors, and silica-cemented fault rocks hosting collocated quartz and pseudotachylyte vein clusters. Ground-based scanline fracture mapping reveals peak damage intensity in proximity of the satellite-mapped lineaments (localized high strain zones?), but with the pseudotachylytes occurring in both the peak- and flanking lower-intensity damage zones. The results suggest that the KSZ hosted paleoseismic ruptures that were not confined to its principal slip zones but may have nucleated on- or ruptured into off-fault splays; and that the NW-striking splays have greater reactivation tendency in contemporary stress field. In general, our findings highlight the nature of preexisting off-fault damage networks that accommodated earthquake rupture and propagation patterns in intraplate regions.</div></div>","PeriodicalId":50035,"journal":{"name":"Journal of Structural Geology","volume":"191 ","pages":"Article 105324"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Structural Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0191814124002761","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In cratonic interiors, long-lived brittle shear zones host records of polyphase deformation, representing inherited structures that can host damaging earthquakes. Here, we explore the internal structure of the Kgomodikae Shear Zone (KSZ), signifying the western continuation of the ∼800-km long Precambrian Kgomodikae-Thabazimbi-Murchinson Fault System which extend along a region of widespread seismicity in southern Africa. At satellite-scale, the KSZ exhibits ENE-to-NE-striking subparallel zones of alternating high/low lineament clustering intensities, with peak-intensity zones that represent hydrologically-permeable principal brittle shear bands. In outcrops, we find pervasive occurrence of slip surfaces with dominant strike-slip paleo-slip vectors, and silica-cemented fault rocks hosting collocated quartz and pseudotachylyte vein clusters. Ground-based scanline fracture mapping reveals peak damage intensity in proximity of the satellite-mapped lineaments (localized high strain zones?), but with the pseudotachylytes occurring in both the peak- and flanking lower-intensity damage zones. The results suggest that the KSZ hosted paleoseismic ruptures that were not confined to its principal slip zones but may have nucleated on- or ruptured into off-fault splays; and that the NW-striking splays have greater reactivation tendency in contemporary stress field. In general, our findings highlight the nature of preexisting off-fault damage networks that accommodated earthquake rupture and propagation patterns in intraplate regions.
期刊介绍:
The Journal of Structural Geology publishes process-oriented investigations about structural geology using appropriate combinations of analog and digital field data, seismic reflection data, satellite-derived data, geometric analysis, kinematic analysis, laboratory experiments, computer visualizations, and analogue or numerical modelling on all scales. Contributions are encouraged to draw perspectives from rheology, rock mechanics, geophysics,metamorphism, sedimentology, petroleum geology, economic geology, geodynamics, planetary geology, tectonics and neotectonics to provide a more powerful understanding of deformation processes and systems. Given the visual nature of the discipline, supplementary materials that portray the data and analysis in 3-D or quasi 3-D manners, including the use of videos, and/or graphical abstracts can significantly strengthen the impact of contributions.