Long-lived seismic instability of a large intraplate brittle shear zone revealed by distributed slip zones and paleoseismic frictional melt, eastern Botswana

IF 2.6 2区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY Journal of Structural Geology Pub Date : 2025-02-01 DOI:10.1016/j.jsg.2024.105324
Debbie Mfa , Folarin Kolawole , Boniface Kgosidintsi , Rasheed Ajala , Elisha Shemang
{"title":"Long-lived seismic instability of a large intraplate brittle shear zone revealed by distributed slip zones and paleoseismic frictional melt, eastern Botswana","authors":"Debbie Mfa ,&nbsp;Folarin Kolawole ,&nbsp;Boniface Kgosidintsi ,&nbsp;Rasheed Ajala ,&nbsp;Elisha Shemang","doi":"10.1016/j.jsg.2024.105324","DOIUrl":null,"url":null,"abstract":"<div><div>In cratonic interiors, long-lived brittle shear zones host records of polyphase deformation, representing inherited structures that can host damaging earthquakes. Here, we explore the internal structure of the Kgomodikae Shear Zone (KSZ), signifying the western continuation of the ∼800-km long Precambrian Kgomodikae-Thabazimbi-Murchinson Fault System which extend along a region of widespread seismicity in southern Africa. At satellite-scale, the KSZ exhibits ENE-to-NE-striking subparallel zones of alternating high/low lineament clustering intensities, with peak-intensity zones that represent hydrologically-permeable principal brittle shear bands. In outcrops, we find pervasive occurrence of slip surfaces with dominant strike-slip paleo-slip vectors, and silica-cemented fault rocks hosting collocated quartz and pseudotachylyte vein clusters. Ground-based scanline fracture mapping reveals peak damage intensity in proximity of the satellite-mapped lineaments (localized high strain zones?), but with the pseudotachylytes occurring in both the peak- and flanking lower-intensity damage zones. The results suggest that the KSZ hosted paleoseismic ruptures that were not confined to its principal slip zones but may have nucleated on- or ruptured into off-fault splays; and that the NW-striking splays have greater reactivation tendency in contemporary stress field. In general, our findings highlight the nature of preexisting off-fault damage networks that accommodated earthquake rupture and propagation patterns in intraplate regions.</div></div>","PeriodicalId":50035,"journal":{"name":"Journal of Structural Geology","volume":"191 ","pages":"Article 105324"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Structural Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0191814124002761","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In cratonic interiors, long-lived brittle shear zones host records of polyphase deformation, representing inherited structures that can host damaging earthquakes. Here, we explore the internal structure of the Kgomodikae Shear Zone (KSZ), signifying the western continuation of the ∼800-km long Precambrian Kgomodikae-Thabazimbi-Murchinson Fault System which extend along a region of widespread seismicity in southern Africa. At satellite-scale, the KSZ exhibits ENE-to-NE-striking subparallel zones of alternating high/low lineament clustering intensities, with peak-intensity zones that represent hydrologically-permeable principal brittle shear bands. In outcrops, we find pervasive occurrence of slip surfaces with dominant strike-slip paleo-slip vectors, and silica-cemented fault rocks hosting collocated quartz and pseudotachylyte vein clusters. Ground-based scanline fracture mapping reveals peak damage intensity in proximity of the satellite-mapped lineaments (localized high strain zones?), but with the pseudotachylytes occurring in both the peak- and flanking lower-intensity damage zones. The results suggest that the KSZ hosted paleoseismic ruptures that were not confined to its principal slip zones but may have nucleated on- or ruptured into off-fault splays; and that the NW-striking splays have greater reactivation tendency in contemporary stress field. In general, our findings highlight the nature of preexisting off-fault damage networks that accommodated earthquake rupture and propagation patterns in intraplate regions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Structural Geology
Journal of Structural Geology 地学-地球科学综合
CiteScore
6.00
自引率
19.40%
发文量
192
审稿时长
15.7 weeks
期刊介绍: The Journal of Structural Geology publishes process-oriented investigations about structural geology using appropriate combinations of analog and digital field data, seismic reflection data, satellite-derived data, geometric analysis, kinematic analysis, laboratory experiments, computer visualizations, and analogue or numerical modelling on all scales. Contributions are encouraged to draw perspectives from rheology, rock mechanics, geophysics,metamorphism, sedimentology, petroleum geology, economic geology, geodynamics, planetary geology, tectonics and neotectonics to provide a more powerful understanding of deformation processes and systems. Given the visual nature of the discipline, supplementary materials that portray the data and analysis in 3-D or quasi 3-D manners, including the use of videos, and/or graphical abstracts can significantly strengthen the impact of contributions.
期刊最新文献
High-resolution geological studies of seismogenic structures Long-lived seismic instability of a large intraplate brittle shear zone revealed by distributed slip zones and paleoseismic frictional melt, eastern Botswana Facies and mechanical stratigraphy control fracture intensity, topology and fractal dimension in folded turbidite sandstones, Northern Apennines, Italy Microstructures along volcanic avalanche fault zone in French Massif Central Intrarift fault interactions: Insights from coseismic stress redistribution from large seismogenic segment ruptures, Northern Malawi Rift
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1