Eco-friendly electrospun nanofibers for air filtration enhanced by TiO2 nanoparticles reactive phases for superior capturing the emitted polycyclic aromatic hydrocarbons (PAHs)

IF 5.9 3区 工程技术 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of Industrial and Engineering Chemistry Pub Date : 2025-01-25 DOI:10.1016/j.jiec.2024.09.055
Salwa M. Abdallah , Hamada B. Hawash , Aya Hamdy , Nada A. Omran , Mohamed Hagar , Nader Shehata , Ahmed H. Hassanin , El Sayed A. Shalaby
{"title":"Eco-friendly electrospun nanofibers for air filtration enhanced by TiO2 nanoparticles reactive phases for superior capturing the emitted polycyclic aromatic hydrocarbons (PAHs)","authors":"Salwa M. Abdallah ,&nbsp;Hamada B. Hawash ,&nbsp;Aya Hamdy ,&nbsp;Nada A. Omran ,&nbsp;Mohamed Hagar ,&nbsp;Nader Shehata ,&nbsp;Ahmed H. Hassanin ,&nbsp;El Sayed A. Shalaby","doi":"10.1016/j.jiec.2024.09.055","DOIUrl":null,"url":null,"abstract":"<div><div>The electrospinning nanofibrous filters have attracted much attention owing to their distinctive physicochemical properties. This work focused on designing a novel, straightforward prototype model and fabricating eco-friendly electrospun nanofiber filters as promising air filtration. The synthesized electrospun nanofiber is composed of cellulose acetate (CA) and thermoplastic polyurethane (TPU), which was enhanced by TiO<sub>2</sub> nanoparticles to improve the capturing of low, medium, and high molecular weight PAHs. The fabricated CA:TPU/TiO<sub>2</sub> and their derivatives were analyzed using FT-IR, XRD, TEM, SEM, TGA, and mechanical characteristics. Different concentrations of TiO<sub>2</sub> (2 %, 4 %, 6 %, 8 %) were evaluated. The determinations of PAHs were achieved using gas chromatography-mass spectrometry (GC–MS) with a TG-5MS column. The newly designed prototype has two air pathways with identical specifications; therefore, it could simultaneously evaluate the efficiency of two filters. In Motobas dumpsite (agricultural sources), the results indicated that the highest efficiency of electrospun nanofiber filters was CA:TPU/TiO<sub>2</sub> 6 %, captured 3041 µg/m<sup>3</sup> of total PAHs, and also in the incinerator stack (industrial sources) was CA:TPU/TiO<sub>2</sub> 6 % captured 9401 µg/m<sup>3</sup> of total PAHs. The concentrations of low molecular weight PAHs were greater than the high molecular weight in all sites, and the electrospun CA:TPU/TiO<sub>2</sub> was the most effective catalyst for air purification.</div></div>","PeriodicalId":363,"journal":{"name":"Journal of Industrial and Engineering Chemistry","volume":"141 ","pages":"Pages 645-659"},"PeriodicalIF":5.9000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial and Engineering Chemistry","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1226086X24006464","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The electrospinning nanofibrous filters have attracted much attention owing to their distinctive physicochemical properties. This work focused on designing a novel, straightforward prototype model and fabricating eco-friendly electrospun nanofiber filters as promising air filtration. The synthesized electrospun nanofiber is composed of cellulose acetate (CA) and thermoplastic polyurethane (TPU), which was enhanced by TiO2 nanoparticles to improve the capturing of low, medium, and high molecular weight PAHs. The fabricated CA:TPU/TiO2 and their derivatives were analyzed using FT-IR, XRD, TEM, SEM, TGA, and mechanical characteristics. Different concentrations of TiO2 (2 %, 4 %, 6 %, 8 %) were evaluated. The determinations of PAHs were achieved using gas chromatography-mass spectrometry (GC–MS) with a TG-5MS column. The newly designed prototype has two air pathways with identical specifications; therefore, it could simultaneously evaluate the efficiency of two filters. In Motobas dumpsite (agricultural sources), the results indicated that the highest efficiency of electrospun nanofiber filters was CA:TPU/TiO2 6 %, captured 3041 µg/m3 of total PAHs, and also in the incinerator stack (industrial sources) was CA:TPU/TiO2 6 % captured 9401 µg/m3 of total PAHs. The concentrations of low molecular weight PAHs were greater than the high molecular weight in all sites, and the electrospun CA:TPU/TiO2 was the most effective catalyst for air purification.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二氧化钛纳米颗粒活性相增强的环保静电纺丝空气过滤纳米纤维对排放的多环芳烃(PAHs)具有优异的捕集性能
静电纺丝纳米纤维过滤器因其独特的物理化学性质而受到广泛关注。本工作的重点是设计一种新颖、直观的原型模型,并制造环保的静电纺纳米纤维过滤器作为有前途的空气过滤。合成的静电纺丝纳米纤维由醋酸纤维素(CA)和热塑性聚氨酯(TPU)组成,并通过TiO2纳米粒子增强其对低、中、高分子量多环芳烃的捕获能力。采用FT-IR、XRD、TEM、SEM、TGA和力学性能对制备的CA:TPU/TiO2及其衍生物进行了分析。TiO2浓度分别为2%、4%、6%、8%。采用TG-5MS色谱柱,气相色谱-质谱联用法测定多环芳烃。新设计的原型机有两个规格相同的空气通道;因此,它可以同时评估两个过滤器的效率。结果表明,在Motobas垃圾场(农业源)中,静电纺纳米纤维过滤器的效率最高为CA:TPU/TiO2 6%,捕获总多环芳烃3041µg/m3;在焚烧炉堆(工业源)中,CA:TPU/TiO2 6%捕获总多环芳烃9401µg/m3。低分子量多环芳烃在各位点的浓度均大于高分子量多环芳烃,电纺CA:TPU/TiO2是最有效的空气净化催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.40
自引率
6.60%
发文量
639
审稿时长
29 days
期刊介绍: Journal of Industrial and Engineering Chemistry is published monthly in English by the Korean Society of Industrial and Engineering Chemistry. JIEC brings together multidisciplinary interests in one journal and is to disseminate information on all aspects of research and development in industrial and engineering chemistry. Contributions in the form of research articles, short communications, notes and reviews are considered for publication. The editors welcome original contributions that have not been and are not to be published elsewhere. Instruction to authors and a manuscript submissions form are printed at the end of each issue. Bulk reprints of individual articles can be ordered. This publication is partially supported by Korea Research Foundation and the Korean Federation of Science and Technology Societies.
期刊最新文献
A single stage anaerobic/anoxic/aerobic hybrid airlift bio-electrochemical reactor (HALBER) for enhancing nitrogen removal from wastewater Evaluation of PM2.5 prediction performance of CMAQ and AI models (LSTM and Transformer) in an operational air quality forecasting system Editorial Board Mechanistic-fuzzy kinetic model for CO2 methanation over Ni-CeO2/γ-Al2O3 catalyst under industrial reactor conditions Design and synthesis of Coumarin–Pyrazole carbothioamide hybrid heterocyclic scaffolds: An integrated experimental and theoretical (DFT/MD) insight into corrosion inhibition, antioxidant, and antibacterial activities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1