Optimal bearing configuration selection for power generation shaft-trains: A linear and nonlinear dynamics approach

IF 4.3 2区 工程技术 Q1 ACOUSTICS Journal of Sound and Vibration Pub Date : 2024-12-06 DOI:10.1016/j.jsv.2024.118907
Athanasios Chasalevris , Ioannis Gavalas , Jerzy T. Sawicki
{"title":"Optimal bearing configuration selection for power generation shaft-trains: A linear and nonlinear dynamics approach","authors":"Athanasios Chasalevris ,&nbsp;Ioannis Gavalas ,&nbsp;Jerzy T. Sawicki","doi":"10.1016/j.jsv.2024.118907","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes a straightforward procedure for defining bearing design configurations in turbine-generator shaft trains. The bearing design inputs specify the bearing type and the pad configuration. The design outputs focus on stability, bearing integrity, and operability of the shaft-train system. The design output is evaluated in two ways: a) linear harmonic analysis utilizing linearized stiffness and damping coefficients for the bearing impedance forces, and b) nonlinear analysis, where the bearing forces are modeled as nonlinear functions of bearing and pedestal kinematics; the response is evaluated by collocation-type method coupled with numerical continuation. Thermohydrodynamic lubrication (THD lubrication) with turbulence correction is considered in the bearing lubrication model.</div><div>The results show that all constraints are satisfied, and the optimal bearing configurations include preload and offset, while no specific trend is observed for specific loads. Laminar oil flow is prompted by the optimization through specific bearing diameters. Linear and nonlinear dynamic models do not render identical optimal designs. Linear model tends to be conservative in the design output, while nonlinear dynamic model provides more accurate predictions, accounting for any whirling orbit shape. The results emphasize the necessity of incorporating nonlinear dynamics into standard rotor dynamic calculations for this type of machines.</div></div>","PeriodicalId":17233,"journal":{"name":"Journal of Sound and Vibration","volume":"599 ","pages":"Article 118907"},"PeriodicalIF":4.3000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sound and Vibration","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022460X24006692","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a straightforward procedure for defining bearing design configurations in turbine-generator shaft trains. The bearing design inputs specify the bearing type and the pad configuration. The design outputs focus on stability, bearing integrity, and operability of the shaft-train system. The design output is evaluated in two ways: a) linear harmonic analysis utilizing linearized stiffness and damping coefficients for the bearing impedance forces, and b) nonlinear analysis, where the bearing forces are modeled as nonlinear functions of bearing and pedestal kinematics; the response is evaluated by collocation-type method coupled with numerical continuation. Thermohydrodynamic lubrication (THD lubrication) with turbulence correction is considered in the bearing lubrication model.
The results show that all constraints are satisfied, and the optimal bearing configurations include preload and offset, while no specific trend is observed for specific loads. Laminar oil flow is prompted by the optimization through specific bearing diameters. Linear and nonlinear dynamic models do not render identical optimal designs. Linear model tends to be conservative in the design output, while nonlinear dynamic model provides more accurate predictions, accounting for any whirling orbit shape. The results emphasize the necessity of incorporating nonlinear dynamics into standard rotor dynamic calculations for this type of machines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Sound and Vibration
Journal of Sound and Vibration 工程技术-工程:机械
CiteScore
9.10
自引率
10.60%
发文量
551
审稿时长
69 days
期刊介绍: The Journal of Sound and Vibration (JSV) is an independent journal devoted to the prompt publication of original papers, both theoretical and experimental, that provide new information on any aspect of sound or vibration. There is an emphasis on fundamental work that has potential for practical application. JSV was founded and operates on the premise that the subject of sound and vibration requires a journal that publishes papers of a high technical standard across the various subdisciplines, thus facilitating awareness of techniques and discoveries in one area that may be applicable in others.
期刊最新文献
Impact of constrained layer damping patches on the dynamic behavior of a turbofan bladed disk Editorial Board Multiple acoustic sources localization in a water tunnel using the modal theory Elucidating negative capacitance design in piezoelectric circuitry to facilitate vibration suppression enhancement assisted by energy harvesting Prediction of sound transmission through plates using spectral Gaussian basis functions and application to plates with periodic acoustic black holes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1