{"title":"Hurst analysis via multi-scale resolution to diagnose flow regimes in gas–solid micro-fluidized beds","authors":"Yanjun Li , Xue Li , Yupeng Du , Likun Ma","doi":"10.1016/j.apt.2025.104805","DOIUrl":null,"url":null,"abstract":"<div><div>Micro-fluidized beds (MFBs) with an ultra-fast energy transmission rate and high wall flux have recently attracted considerable interest. The hydrodynamic behavior in the MFBs has been demonstrated to deviate from the ones in the laboratory-scale fluidized beds (LFBs) because of the prominent wall effect. In order to understand the influence of the wall effect on flow regime transformation, a comprehensive experimental analysis, considering the effects of bed diameter, static bed height, and the properties of particles, was conducted using pressure drop data and visualization images. A new Hurst analysis, combined with a multi-scale resolution methodology, has been established to diagnose flow regimes, which successfully reflected the bubble characteristics of the fluidization system on the <em>meso</em>-scale. A generalized flow regime diagram was proposed based on the analysis of experimental data, and the influence of key factors on the velocity of flow pattern transformation was further investigated. On this basis, in the absence of preset function forms, the data-driven symbolic regression method was used to simultaneously search for the equation form and various parameters of the prediction correlation, and an empirical correlation formula for predicting the transformation of each flow pattern was automatically generated with excellent predictability. It is believed that this work is helpful for selecting desired fluidization conditions in practical applications, and this methodology can be expanded to the analysis of other complex systems with multi-scale characteristics.</div></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"36 3","pages":"Article 104805"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921883125000263","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Micro-fluidized beds (MFBs) with an ultra-fast energy transmission rate and high wall flux have recently attracted considerable interest. The hydrodynamic behavior in the MFBs has been demonstrated to deviate from the ones in the laboratory-scale fluidized beds (LFBs) because of the prominent wall effect. In order to understand the influence of the wall effect on flow regime transformation, a comprehensive experimental analysis, considering the effects of bed diameter, static bed height, and the properties of particles, was conducted using pressure drop data and visualization images. A new Hurst analysis, combined with a multi-scale resolution methodology, has been established to diagnose flow regimes, which successfully reflected the bubble characteristics of the fluidization system on the meso-scale. A generalized flow regime diagram was proposed based on the analysis of experimental data, and the influence of key factors on the velocity of flow pattern transformation was further investigated. On this basis, in the absence of preset function forms, the data-driven symbolic regression method was used to simultaneously search for the equation form and various parameters of the prediction correlation, and an empirical correlation formula for predicting the transformation of each flow pattern was automatically generated with excellent predictability. It is believed that this work is helpful for selecting desired fluidization conditions in practical applications, and this methodology can be expanded to the analysis of other complex systems with multi-scale characteristics.
期刊介绍:
The aim of Advanced Powder Technology is to meet the demand for an international journal that integrates all aspects of science and technology research on powder and particulate materials. The journal fulfills this purpose by publishing original research papers, rapid communications, reviews, and translated articles by prominent researchers worldwide.
The editorial work of Advanced Powder Technology, which was founded as the International Journal of the Society of Powder Technology, Japan, is now shared by distinguished board members, who operate in a unique framework designed to respond to the increasing global demand for articles on not only powder and particles, but also on various materials produced from them.
Advanced Powder Technology covers various areas, but a discussion of powder and particles is required in articles. Topics include: Production of powder and particulate materials in gases and liquids(nanoparticles, fine ceramics, pharmaceuticals, novel functional materials, etc.); Aerosol and colloidal processing; Powder and particle characterization; Dynamics and phenomena; Calculation and simulation (CFD, DEM, Monte Carlo method, population balance, etc.); Measurement and control of powder processes; Particle modification; Comminution; Powder handling and operations (storage, transport, granulation, separation, fluidization, etc.)