{"title":"Structured physics-guided neural networks for electromagnetic commutation applied to industrial linear motors","authors":"Max Bolderman , Mircea Lazar , Hans Butler","doi":"10.1016/j.mechatronics.2024.103291","DOIUrl":null,"url":null,"abstract":"<div><div>Mechatronic systems are described by an interconnection of the electromagnetic part, i.e., a static position-dependent nonlinear relation between currents and forces, and the mechanical part, i.e., a dynamic relation from forces to position. Commutation inverts a model of the electromagnetic part of the system, and thereby removes the electromagnetic part from the position control problem. Typical commutation algorithms rely on simplified models derived from physics-based knowledge, which do not take into account position dependent parasitic effects. In turn, these commutation related model errors translate into position tracking errors, which limit the system performance. Therefore, in this work, we develop a data-driven approach to commutation using physics-guided neural networks (PGNNs). A novel PGNN model is proposed which structures neural networks (NNs) to learn specific motor dependent parasitic effects. The PGNN is used to identify a model of the electromagnetic part using force measurements, after which it is analytically inverted to obtain a PGNN-based commutation algorithm. Motivated by industrial applications, we develop an input transformation to deal with systems with fixed commutation, i.e., when the currents cannot be controlled. Real-life experiments on an industrial coreless linear motor (CLM) demonstrate a factor 10 improvement in the commutation error in driving direction and a factor 4 improvement in the position error with respect to classical commutation in terms of the mean-squared error (MSE).</div></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"106 ","pages":"Article 103291"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957415824001569","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Mechatronic systems are described by an interconnection of the electromagnetic part, i.e., a static position-dependent nonlinear relation between currents and forces, and the mechanical part, i.e., a dynamic relation from forces to position. Commutation inverts a model of the electromagnetic part of the system, and thereby removes the electromagnetic part from the position control problem. Typical commutation algorithms rely on simplified models derived from physics-based knowledge, which do not take into account position dependent parasitic effects. In turn, these commutation related model errors translate into position tracking errors, which limit the system performance. Therefore, in this work, we develop a data-driven approach to commutation using physics-guided neural networks (PGNNs). A novel PGNN model is proposed which structures neural networks (NNs) to learn specific motor dependent parasitic effects. The PGNN is used to identify a model of the electromagnetic part using force measurements, after which it is analytically inverted to obtain a PGNN-based commutation algorithm. Motivated by industrial applications, we develop an input transformation to deal with systems with fixed commutation, i.e., when the currents cannot be controlled. Real-life experiments on an industrial coreless linear motor (CLM) demonstrate a factor 10 improvement in the commutation error in driving direction and a factor 4 improvement in the position error with respect to classical commutation in terms of the mean-squared error (MSE).
期刊介绍:
Mechatronics is the synergistic combination of precision mechanical engineering, electronic control and systems thinking in the design of products and manufacturing processes. It relates to the design of systems, devices and products aimed at achieving an optimal balance between basic mechanical structure and its overall control. The purpose of this journal is to provide rapid publication of topical papers featuring practical developments in mechatronics. It will cover a wide range of application areas including consumer product design, instrumentation, manufacturing methods, computer integration and process and device control, and will attract a readership from across the industrial and academic research spectrum. Particular importance will be attached to aspects of innovation in mechatronics design philosophy which illustrate the benefits obtainable by an a priori integration of functionality with embedded microprocessor control. A major item will be the design of machines, devices and systems possessing a degree of computer based intelligence. The journal seeks to publish research progress in this field with an emphasis on the applied rather than the theoretical. It will also serve the dual role of bringing greater recognition to this important area of engineering.