Flexible linear clock–based distributed self-triggered active power-sharing secondary control of AC microgrids

IF 1.9 Q4 ENERGY & FUELS Global Energy Interconnection Pub Date : 2024-12-01 DOI:10.1016/j.gloei.2024.11.004
Yulin Chen , Xing Huang , Guangxin Zhi , Shaohua Yang , Hongxun Hui , Donglian Qi , Yunfeng Yan , Fengkai Gao
{"title":"Flexible linear clock–based distributed self-triggered active power-sharing secondary control of AC microgrids","authors":"Yulin Chen ,&nbsp;Xing Huang ,&nbsp;Guangxin Zhi ,&nbsp;Shaohua Yang ,&nbsp;Hongxun Hui ,&nbsp;Donglian Qi ,&nbsp;Yunfeng Yan ,&nbsp;Fengkai Gao","doi":"10.1016/j.gloei.2024.11.004","DOIUrl":null,"url":null,"abstract":"<div><div>Traditional active power sharing in microgrids, achieved by the distributed average consensus, requires each controller to continuously trigger and communicate with each other, which is a wasteful use of the limited computation and communication resources of the secondary controller. To enhance the efficiency of secondary control, we developed a novel distributed self-triggered active power-sharing control strategy by introducing the signum function and a flexible linear clock. Unlike continuous communication–based controllers, the proposed self-triggered distributed controller prompts distributed generators to perform control actions and share information with their neighbors only at specific time instants monitored by the linear clock. Therefore, this approach results in a significant reduction in both the computation and communication requirements. Moreover, this design naturally avoids Zeno behavior. Furthermore, a modified triggering condition was established to achieve further reductions in computation and communication. The simulation results confirmed that the proposed control scheme achieves distributed active power sharing with very few controller triggers, thereby substantially enhancing the efficacy of secondary control in MGs.</div></div>","PeriodicalId":36174,"journal":{"name":"Global Energy Interconnection","volume":"7 6","pages":"Pages 786-797"},"PeriodicalIF":1.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Energy Interconnection","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096511724001063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional active power sharing in microgrids, achieved by the distributed average consensus, requires each controller to continuously trigger and communicate with each other, which is a wasteful use of the limited computation and communication resources of the secondary controller. To enhance the efficiency of secondary control, we developed a novel distributed self-triggered active power-sharing control strategy by introducing the signum function and a flexible linear clock. Unlike continuous communication–based controllers, the proposed self-triggered distributed controller prompts distributed generators to perform control actions and share information with their neighbors only at specific time instants monitored by the linear clock. Therefore, this approach results in a significant reduction in both the computation and communication requirements. Moreover, this design naturally avoids Zeno behavior. Furthermore, a modified triggering condition was established to achieve further reductions in computation and communication. The simulation results confirmed that the proposed control scheme achieves distributed active power sharing with very few controller triggers, thereby substantially enhancing the efficacy of secondary control in MGs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Global Energy Interconnection
Global Energy Interconnection Engineering-Automotive Engineering
CiteScore
5.70
自引率
0.00%
发文量
985
审稿时长
15 weeks
期刊最新文献
Capacity planning of hydro-wind-solar hybrid power systems considering hydropower forbidden zones IoT-based green-smart photovoltaic system under extreme climatic conditions for sustainable energy development Analysis and construction of evaluation index system of inter-provincial electricity spot markets Research on decision-making behavior of multi-agent alliance in cross-border electricity market environment: an evolutionary game Model simulation of thermal environment and energy effects of rooftop distributed photovoltaics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1