Elucidating the origins of ultrafine particles in a major city using long-term datasets: Evidence of a new midday process

IF 4.2 2区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Atmospheric Environment Pub Date : 2024-12-26 DOI:10.1016/j.atmosenv.2024.121006
Hosna Movahhedinia , Nathan Hilker , Cheol-Heon Jeong , Jonathan M. Wang , Greg J. Evans
{"title":"Elucidating the origins of ultrafine particles in a major city using long-term datasets: Evidence of a new midday process","authors":"Hosna Movahhedinia ,&nbsp;Nathan Hilker ,&nbsp;Cheol-Heon Jeong ,&nbsp;Jonathan M. Wang ,&nbsp;Greg J. Evans","doi":"10.1016/j.atmosenv.2024.121006","DOIUrl":null,"url":null,"abstract":"<div><div>Ultrafine particles (UFPs) are both directly emitted from human activities and produced through atmospheric processes. The origins of ultrafine particles were explored in an urban area by analyzing 6 to 520 nm particle size data collected from 2006 to 2021 near a busy roadway in downtown Toronto, Canada. Days were classified into five categories: Strong Nucleation, Midday Pollution, Traffic Pollution, Baseline, and Mixed. Strong Nucleation days, which comprised about 6% of the days, showed long nucleation events (¿ 3 hr) with an average particle number concentration of 3.1±0.1<span><math><mrow><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>4</mn></mrow></msup></mrow></math></span> #/<span><math><msup><mrow><mi>cm</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> around noon (10 am to 2 pm). Midday Pollution days also exhibited higher particle concentrations around noon with an average of 3.3±0.06<span><math><mrow><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>4</mn></mrow></msup></mrow></math></span> #/<span><math><msup><mrow><mi>cm</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. The higher number concentrations on these days appeared to arise from locally emitted UFP and be associated with enhanced production of UFP within vehicle exhaust plumes. The Traffic Pollution days showed morning traffic emissions, with no midday rise. The average total UFP concentration around the morning rush hour (6 am to 9 am) on these days was 2.1±0.2<span><math><mrow><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>4</mn></mrow></msup></mrow></math></span> #/<span><math><msup><mrow><mi>cm</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. About 27% of the days had lower particle number concentrations (daily average: 1.2±0.2<span><math><mrow><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>4</mn></mrow></msup></mrow></math></span> #/<span><math><msup><mrow><mi>cm</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>) throughout the day. The number concentrations were lower on these “Baseline days” and the influence of traffic emissions was also lower but still observable in the diurnal pattern. Lastly, Mixed days were the days that showed higher than Baseline concentrations of UFP around the morning rush hour (2.0±0.06<span><math><mrow><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>4</mn></mrow></msup></mrow></math></span> #/<span><math><msup><mrow><mi>cm</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>) or midday (2.3±0.1<span><math><mrow><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>4</mn></mrow></msup></mrow></math></span> #/<span><math><msup><mrow><mi>cm</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>); UFP on these days came from a mix of traffic pollution, nucleation event, or a midday process, with no one of these sources clearly dominant. These days could not be categorized into any of these categories with confidence. Analysis of the organic and inorganic speciation, trace elements, and traffic-related air pollutants suggested that the UFP on Midday Pollution days came from vehicle emissions enhanced by reactions within their exhaust plumes. Moreover, the time series analysis of these categories showed that the frequency of Midday Pollution days has decreased over the years with the number of Baseline days correspondingly increasing. Meteorological analysis showed that Midday and Traffic Pollution days happened more often in winter while Strong Nucleation days were more frequent in summer. This study has shown that higher midday UFP concentrations do not arise only due to nucleation events and that a previously unrecognized Midday Pollution process can be a large contributor.</div></div>","PeriodicalId":250,"journal":{"name":"Atmospheric Environment","volume":"343 ","pages":"Article 121006"},"PeriodicalIF":4.2000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1352231024006812","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Ultrafine particles (UFPs) are both directly emitted from human activities and produced through atmospheric processes. The origins of ultrafine particles were explored in an urban area by analyzing 6 to 520 nm particle size data collected from 2006 to 2021 near a busy roadway in downtown Toronto, Canada. Days were classified into five categories: Strong Nucleation, Midday Pollution, Traffic Pollution, Baseline, and Mixed. Strong Nucleation days, which comprised about 6% of the days, showed long nucleation events (¿ 3 hr) with an average particle number concentration of 3.1±0.1×104 #/cm3 around noon (10 am to 2 pm). Midday Pollution days also exhibited higher particle concentrations around noon with an average of 3.3±0.06×104 #/cm3. The higher number concentrations on these days appeared to arise from locally emitted UFP and be associated with enhanced production of UFP within vehicle exhaust plumes. The Traffic Pollution days showed morning traffic emissions, with no midday rise. The average total UFP concentration around the morning rush hour (6 am to 9 am) on these days was 2.1±0.2×104 #/cm3. About 27% of the days had lower particle number concentrations (daily average: 1.2±0.2×104 #/cm3) throughout the day. The number concentrations were lower on these “Baseline days” and the influence of traffic emissions was also lower but still observable in the diurnal pattern. Lastly, Mixed days were the days that showed higher than Baseline concentrations of UFP around the morning rush hour (2.0±0.06×104 #/cm3) or midday (2.3±0.1×104 #/cm3); UFP on these days came from a mix of traffic pollution, nucleation event, or a midday process, with no one of these sources clearly dominant. These days could not be categorized into any of these categories with confidence. Analysis of the organic and inorganic speciation, trace elements, and traffic-related air pollutants suggested that the UFP on Midday Pollution days came from vehicle emissions enhanced by reactions within their exhaust plumes. Moreover, the time series analysis of these categories showed that the frequency of Midday Pollution days has decreased over the years with the number of Baseline days correspondingly increasing. Meteorological analysis showed that Midday and Traffic Pollution days happened more often in winter while Strong Nucleation days were more frequent in summer. This study has shown that higher midday UFP concentrations do not arise only due to nucleation events and that a previously unrecognized Midday Pollution process can be a large contributor.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Atmospheric Environment
Atmospheric Environment 环境科学-环境科学
CiteScore
9.40
自引率
8.00%
发文量
458
审稿时长
53 days
期刊介绍: Atmospheric Environment has an open access mirror journal Atmospheric Environment: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Atmospheric Environment is the international journal for scientists in different disciplines related to atmospheric composition and its impacts. The journal publishes scientific articles with atmospheric relevance of emissions and depositions of gaseous and particulate compounds, chemical processes and physical effects in the atmosphere, as well as impacts of the changing atmospheric composition on human health, air quality, climate change, and ecosystems.
期刊最新文献
Analysis of contrasting aerosol indirect effects in liquid water clouds over the northern part of Arabian Sea Dosimetry simulations of ultrafine particles deposition to the human respiratory tract and transport to the olfactory region for female receptors Revealing the chemical composition and sources of carbonaceous aerosols in PM2.5: Insights from the Omicron-22 lockdown in Shanghai Deep learning calibration model for PurpleAir PM2.5 measurements: Comprehensive Investigation of the PurpleAir network Unexpected changes in occurrence and sources of chromophoric dissolved organic matter in PM2.5 driven by the clean air action over Xi'an, China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1