{"title":"Elucidating the potential of non-edible milkweed seed oil for biodiesel production using green pod-derived nano-catalysts","authors":"Kanwal , Okezie Emmanuel , Rozina , Ubani Micheal , Muhammad Zafar","doi":"10.1016/j.wmb.2024.12.004","DOIUrl":null,"url":null,"abstract":"<div><div>Addressing the dual challenges of greenhouse gas emissions and fossil fuel depletion requires sustainable and cost-effective energy solutions. This study investigates biodiesel production from non-edible <em>Calotropis gigantea</em> L. seed oil using a novel copper oxide (CuO) nano-catalyst synthesized from the green pods of <em>C. gigantea</em>. CuO nanoparticles were characterized using Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and scanning electron microscopy (SEM). Optimal biodiesel production conditions were achieved at a methanol-to-oil molar ratio of 9:1, reaction temperature of 80 °C, reaction time of 105 min, and catalyst loading of 0.74 wt%, resulting in a 90 % yield. The synthesized biodiesel was characterized through FT-IR spectroscopy, and gas chromatography-mass spectrometry (GC–MS). Physicochemical analysis demonstrated compliance with both European (EN 14214) and American (ASTM D 6751) biodiesel standards, exhibiting favorable properties including density (0.792 kg/L), acid value (0.34 mg KOH/g), kinematic viscosity (6 mm<sup>2</sup>/s), flash point (91 °C), cloud point (−10 °C), pour point (−8 °C), and minimal sulphur content (0.00097 wt%). These findings establish the viability of converting toxic, non-edible <em>C. gigantea</em> seeds into high-quality biodiesel, presenting a promising pathway toward sustainable energy production while potentially fostering regional socioeconomic development through valorization of agricultural waste.</div></div>","PeriodicalId":101276,"journal":{"name":"Waste Management Bulletin","volume":"3 1","pages":"Pages 27-38"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste Management Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949750724001068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Addressing the dual challenges of greenhouse gas emissions and fossil fuel depletion requires sustainable and cost-effective energy solutions. This study investigates biodiesel production from non-edible Calotropis gigantea L. seed oil using a novel copper oxide (CuO) nano-catalyst synthesized from the green pods of C. gigantea. CuO nanoparticles were characterized using Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and scanning electron microscopy (SEM). Optimal biodiesel production conditions were achieved at a methanol-to-oil molar ratio of 9:1, reaction temperature of 80 °C, reaction time of 105 min, and catalyst loading of 0.74 wt%, resulting in a 90 % yield. The synthesized biodiesel was characterized through FT-IR spectroscopy, and gas chromatography-mass spectrometry (GC–MS). Physicochemical analysis demonstrated compliance with both European (EN 14214) and American (ASTM D 6751) biodiesel standards, exhibiting favorable properties including density (0.792 kg/L), acid value (0.34 mg KOH/g), kinematic viscosity (6 mm2/s), flash point (91 °C), cloud point (−10 °C), pour point (−8 °C), and minimal sulphur content (0.00097 wt%). These findings establish the viability of converting toxic, non-edible C. gigantea seeds into high-quality biodiesel, presenting a promising pathway toward sustainable energy production while potentially fostering regional socioeconomic development through valorization of agricultural waste.