Nanocarriers in skin cancer treatment: Emerging drug delivery approaches and innovations

Laxmi A. Jadhav, Satish K. Mandlik
{"title":"Nanocarriers in skin cancer treatment: Emerging drug delivery approaches and innovations","authors":"Laxmi A. Jadhav,&nbsp;Satish K. Mandlik","doi":"10.1016/j.ntm.2024.100068","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Skin cancer is a growing global health issue, with rising incidence rates, particularly among Caucasian populations. It is the most common malignancy, contributing significantly to mortality and decreased quality of life worldwide. While surgical interventions remain the primary treatment, there is a pressing need for innovative strategies to reduce the morbidity and mortality associated with the disease. As the burden of skin cancer continues to grow, the medical community is increasingly exploring novel therapeutic approaches to improve patient outcomes.</div></div><div><h3>Main body</h3><div>Nanotechnology has introduced new possibilities for treating skin cancer, offering advantages in targeted drug delivery, advanced imaging, and diagnostics. Nanomaterials are especially useful in dermatology, as they enhance the penetration and retention of therapeutic agents while minimizing side effects. Various nanomaterials have been studied for their potential in treating skin disorders, including cancer. This review examines the role of nanotechnology in skin cancer treatment, focusing on the development and design of nanocarriers for the precise delivery of drugs. We also discuss the advantages of nanotechnology over traditional treatments, such as improved bioavailability and targeted action. Additionally, we explore clinical trials, patents and FDA approved products related to nanocarrier-based treatments for cancer and skin cancer, highlighting advancements in the field.</div></div><div><h3>Conclusion</h3><div>Nanotechnology holds significant promise in revolutionizing skin cancer treatment. As research progresses, it is expected that more effective, personalized therapies will emerge, ultimately improving patient outcomes. Integrating nanotechnology into clinical practice could elevate the standard of care, offering new hope in managing skin cancer.</div></div>","PeriodicalId":100941,"journal":{"name":"Nano TransMed","volume":"4 ","pages":"Article 100068"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano TransMed","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2790676024000396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Skin cancer is a growing global health issue, with rising incidence rates, particularly among Caucasian populations. It is the most common malignancy, contributing significantly to mortality and decreased quality of life worldwide. While surgical interventions remain the primary treatment, there is a pressing need for innovative strategies to reduce the morbidity and mortality associated with the disease. As the burden of skin cancer continues to grow, the medical community is increasingly exploring novel therapeutic approaches to improve patient outcomes.

Main body

Nanotechnology has introduced new possibilities for treating skin cancer, offering advantages in targeted drug delivery, advanced imaging, and diagnostics. Nanomaterials are especially useful in dermatology, as they enhance the penetration and retention of therapeutic agents while minimizing side effects. Various nanomaterials have been studied for their potential in treating skin disorders, including cancer. This review examines the role of nanotechnology in skin cancer treatment, focusing on the development and design of nanocarriers for the precise delivery of drugs. We also discuss the advantages of nanotechnology over traditional treatments, such as improved bioavailability and targeted action. Additionally, we explore clinical trials, patents and FDA approved products related to nanocarrier-based treatments for cancer and skin cancer, highlighting advancements in the field.

Conclusion

Nanotechnology holds significant promise in revolutionizing skin cancer treatment. As research progresses, it is expected that more effective, personalized therapies will emerge, ultimately improving patient outcomes. Integrating nanotechnology into clinical practice could elevate the standard of care, offering new hope in managing skin cancer.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Harnessing silica nanoparticles grafted with ascorbic acid to alleviate oxidative stress and impaired brain activity in rats Erratum regarding previously published articles Graphene nanomaterial-based electrochemical biosensors for salivary biomarker detection: A translational approach to oral cancer diagnostics PROTAC-based therapeutics for targeting HPV oncoproteins in head and neck cancers Antioxidant and anti-diabetic potential of the green synthesized silver nanoparticles using Martynia annua L. root extract
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1