Yutong Zou , Chengkun Xiao , Xiaoyang Kong , Liang Qiao , Wei Wang , Chunya Wang , Aijun Duan , Chunming Xu , Xilong Wang
{"title":"Influence of grain size of acidic NiMo/TS-1 on its catalytic performance for hydrodesulfurization of dibenzothiophenes","authors":"Yutong Zou , Chengkun Xiao , Xiaoyang Kong , Liang Qiao , Wei Wang , Chunya Wang , Aijun Duan , Chunming Xu , Xilong Wang","doi":"10.1016/j.crcon.2024.100299","DOIUrl":null,"url":null,"abstract":"<div><div>TS-1 zeolites with different grain sizes were prepared under hydrothermal conditions by tuning the amount of template agent, chelating agent, and temperature, which were further used as supports for the NiMo/TS-1 catalysts. The optimization of synthesis conditions has achieved controllable synthesis of grain sizes from nano-scale to micron-scale. TS-1 with smaller grain sizes possess larger specific surface area, external specific surface area, and pore volume, which can effectively shorten the diffusion path of the sulfide with complex structure. Nano-scale TS-1 has more highly-coordinated Ti species, acting as electronic additives to increase the sulfidation degree of the catalyst. Nano-scale NiMo/TS-1 exhibits higher acidity, which is beneficial for hydrodesulfurization (HDS) reactions. Among the series of NiMo/TS-1 catalysts, NiMo/TS-1 (120 nm) catalyst exhibits the highest dibenzothiophene (DBT, 88.4 %) and 4,6-dimethylbenzothiophene (4,6-DMDBT, 62.1 %) HDS activities.</div></div>","PeriodicalId":52958,"journal":{"name":"Carbon Resources Conversion","volume":"8 1","pages":"Article 100299"},"PeriodicalIF":6.4000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Resources Conversion","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588913324000887","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
TS-1 zeolites with different grain sizes were prepared under hydrothermal conditions by tuning the amount of template agent, chelating agent, and temperature, which were further used as supports for the NiMo/TS-1 catalysts. The optimization of synthesis conditions has achieved controllable synthesis of grain sizes from nano-scale to micron-scale. TS-1 with smaller grain sizes possess larger specific surface area, external specific surface area, and pore volume, which can effectively shorten the diffusion path of the sulfide with complex structure. Nano-scale TS-1 has more highly-coordinated Ti species, acting as electronic additives to increase the sulfidation degree of the catalyst. Nano-scale NiMo/TS-1 exhibits higher acidity, which is beneficial for hydrodesulfurization (HDS) reactions. Among the series of NiMo/TS-1 catalysts, NiMo/TS-1 (120 nm) catalyst exhibits the highest dibenzothiophene (DBT, 88.4 %) and 4,6-dimethylbenzothiophene (4,6-DMDBT, 62.1 %) HDS activities.
期刊介绍:
Carbon Resources Conversion (CRC) publishes fundamental studies and industrial developments regarding relevant technologies aiming for the clean, efficient, value-added, and low-carbon utilization of carbon-containing resources as fuel for energy and as feedstock for materials or chemicals from, for example, fossil fuels, biomass, syngas, CO2, hydrocarbons, and organic wastes via physical, thermal, chemical, biological, and other technical methods. CRC also publishes scientific and engineering studies on resource characterization and pretreatment, carbon material innovation and production, clean technologies related to carbon resource conversion and utilization, and various process-supporting technologies, including on-line or off-line measurement and monitoring, modeling, simulations focused on safe and efficient process operation and control, and process and equipment optimization.