{"title":"Asymmetric to symmetric fission transition in 180Hg⁎: Effects of excitation energy and angular momentum","authors":"Dalip Singh Verma, Pooja Chauhan, Vivek","doi":"10.1016/j.nuclphysa.2025.123017","DOIUrl":null,"url":null,"abstract":"<div><div>The transition from asymmetric to symmetric fission in the <sup>180</sup>Hg<sup>⁎</sup> nucleus, formed in the <sup>36</sup>Ar + <sup>144</sup>Sm reaction, as a function of excitation energy and angular momentum has been investigated. Using the dynamical cluster-decay model, the fragmentation potential, preformation probability, and cross-sections have been analyzed for asymmetric (80, 100) and symmetric (90, 90) mass fission channels, considering both the optimum hot and cold orientations of the fragments, as well as the case of symmetric mass fission channel with fragments assumed to be spherical. The calculations reveal that deformed proton and neutron shell closures favour asymmetric fission at lower excitation energies, while a transition to symmetric fission occurs near 40 MeV of excitation energy due to changes in fragment deformation with excitation energy. These findings are consistent with the available experimental observations and theoretical predictions. The transition also occurs with increasing angular momentum, but only for optimum hot orientations.</div></div>","PeriodicalId":19246,"journal":{"name":"Nuclear Physics A","volume":"1055 ","pages":"Article 123017"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics A","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037594742500003X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
The transition from asymmetric to symmetric fission in the 180Hg⁎ nucleus, formed in the 36Ar + 144Sm reaction, as a function of excitation energy and angular momentum has been investigated. Using the dynamical cluster-decay model, the fragmentation potential, preformation probability, and cross-sections have been analyzed for asymmetric (80, 100) and symmetric (90, 90) mass fission channels, considering both the optimum hot and cold orientations of the fragments, as well as the case of symmetric mass fission channel with fragments assumed to be spherical. The calculations reveal that deformed proton and neutron shell closures favour asymmetric fission at lower excitation energies, while a transition to symmetric fission occurs near 40 MeV of excitation energy due to changes in fragment deformation with excitation energy. These findings are consistent with the available experimental observations and theoretical predictions. The transition also occurs with increasing angular momentum, but only for optimum hot orientations.
期刊介绍:
Nuclear Physics A focuses on the domain of nuclear and hadronic physics and includes the following subsections: Nuclear Structure and Dynamics; Intermediate and High Energy Heavy Ion Physics; Hadronic Physics; Electromagnetic and Weak Interactions; Nuclear Astrophysics. The emphasis is on original research papers. A number of carefully selected and reviewed conference proceedings are published as an integral part of the journal.