Ali Mollaebrahimi , Paul Constantin , Timo Dickel , Daler Amanbayev , Simeon Glöckner , Emma Haettner , Debodyuti Kar , Gabriella Kripko-Koncz , Deepak Kumar , Kriti Mahajan , Israel Mardor , David Morrissey , Meetika Narang , Wolfgang R. Plaß , Amir Shrayer , Nazarena Tortorelli , Jiajun Yu , Jasmiina Ahokas , Beatriz Amorim , Samuel Ayet San Andrés , Jianwei Zhao
{"title":"First observation of MNT isotope beams at the FRS Ion Catcher","authors":"Ali Mollaebrahimi , Paul Constantin , Timo Dickel , Daler Amanbayev , Simeon Glöckner , Emma Haettner , Debodyuti Kar , Gabriella Kripko-Koncz , Deepak Kumar , Kriti Mahajan , Israel Mardor , David Morrissey , Meetika Narang , Wolfgang R. Plaß , Amir Shrayer , Nazarena Tortorelli , Jiajun Yu , Jasmiina Ahokas , Beatriz Amorim , Samuel Ayet San Andrés , Jianwei Zhao","doi":"10.1016/j.nuclphysa.2025.123041","DOIUrl":null,"url":null,"abstract":"<div><div>An exploratory experiment on Multi-Nucleon Transfer (MNT) reactions was successfully conducted at the FRS Ion Catcher setup at GSI. The experiment demonstrated the production of MNT-driven radioactive ion beams (RIBs) produced by decelerated relativistic beams. A beam of <sup>238</sup>U ions was reacted with a <sup>209</sup>Bi target at near-Coulomb barrier energies inside the specially modified Cryogenic Stopping Cell (CSC) for the production and thermalization of MNT products. These products were then identified using a Multiple-Reflection Time-Of-Flight Mass Spectrometer (MR-TOF-MS). The observation of target-like MNT fragments along the <span><math><mi>A</mi><mo>=</mo><mn>211</mn></math></span> isobaric chain provided a proof-of-principle for future MNT studies with the FRS Ion Catcher setup.</div></div>","PeriodicalId":19246,"journal":{"name":"Nuclear Physics A","volume":"1057 ","pages":"Article 123041"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics A","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375947425000272","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
An exploratory experiment on Multi-Nucleon Transfer (MNT) reactions was successfully conducted at the FRS Ion Catcher setup at GSI. The experiment demonstrated the production of MNT-driven radioactive ion beams (RIBs) produced by decelerated relativistic beams. A beam of 238U ions was reacted with a 209Bi target at near-Coulomb barrier energies inside the specially modified Cryogenic Stopping Cell (CSC) for the production and thermalization of MNT products. These products were then identified using a Multiple-Reflection Time-Of-Flight Mass Spectrometer (MR-TOF-MS). The observation of target-like MNT fragments along the isobaric chain provided a proof-of-principle for future MNT studies with the FRS Ion Catcher setup.
期刊介绍:
Nuclear Physics A focuses on the domain of nuclear and hadronic physics and includes the following subsections: Nuclear Structure and Dynamics; Intermediate and High Energy Heavy Ion Physics; Hadronic Physics; Electromagnetic and Weak Interactions; Nuclear Astrophysics. The emphasis is on original research papers. A number of carefully selected and reviewed conference proceedings are published as an integral part of the journal.