Effortless alkalinity analysis using AI and smartphone technology, no equipment needed, from freshwater to saltwater

Zachary Y. Han , Zihan Zheng , Alan Y. Han , Huichun Zhang
{"title":"Effortless alkalinity analysis using AI and smartphone technology, no equipment needed, from freshwater to saltwater","authors":"Zachary Y. Han ,&nbsp;Zihan Zheng ,&nbsp;Alan Y. Han ,&nbsp;Huichun Zhang","doi":"10.1016/j.eehl.2024.10.002","DOIUrl":null,"url":null,"abstract":"<div><div>Alkalinity is a crucial water quality parameter with significant environmental and engineered system applications. Various analysis methods exist, from traditional titrations to advanced spectrophotometric and electrochemical techniques, each with specific benefits and limitations. Developing simple, affordable techniques for alkalinity analysis is essential to facilitate extensive and reliable water quality monitoring, empowering citizen scientists, and overcoming financial barriers in traditional monitoring programs. In this work, we developed an equipment-free, user-friendly alkalinity analysis approach accessible to a broad demographic. Specifically, we employed low-cost commercial reagents to generate color changes in response to alkalinity levels in various freshwater and saltwater samples. These images were captured with a smartphone and processed using machine learning models to correlate color intensity with alkalinity levels. After examining the effects of container type, lighting condition, ML algorithms, and sample size, we obtained the best models with R<sup>2</sup> values of 0.868 ± 0.024 and 0.978 ± 0.008, and root-mean-square-error values of 29.5 ± 2.6 and 14.1 ± 2.0 for freshwater and saltwater, respectively. Five inexperienced users utilized this method for alkalinity analysis and achieved comparable results in performance. Additionally, we developed a user-friendly website where users, without prior experience, can upload images to obtain alkalinity readings for their water samples. This AI-powered, equipment-free technology represents a significant milestone in water quality monitoring, deviating from the trend of developing increasingly advanced analytical techniques and serving as a foundation for developing similar methods across various water quality parameters and broader analytical applications.</div></div>","PeriodicalId":29813,"journal":{"name":"Eco-Environment & Health","volume":"4 1","pages":"Article 100125"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eco-Environment & Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772985024000632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Alkalinity is a crucial water quality parameter with significant environmental and engineered system applications. Various analysis methods exist, from traditional titrations to advanced spectrophotometric and electrochemical techniques, each with specific benefits and limitations. Developing simple, affordable techniques for alkalinity analysis is essential to facilitate extensive and reliable water quality monitoring, empowering citizen scientists, and overcoming financial barriers in traditional monitoring programs. In this work, we developed an equipment-free, user-friendly alkalinity analysis approach accessible to a broad demographic. Specifically, we employed low-cost commercial reagents to generate color changes in response to alkalinity levels in various freshwater and saltwater samples. These images were captured with a smartphone and processed using machine learning models to correlate color intensity with alkalinity levels. After examining the effects of container type, lighting condition, ML algorithms, and sample size, we obtained the best models with R2 values of 0.868 ± 0.024 and 0.978 ± 0.008, and root-mean-square-error values of 29.5 ± 2.6 and 14.1 ± 2.0 for freshwater and saltwater, respectively. Five inexperienced users utilized this method for alkalinity analysis and achieved comparable results in performance. Additionally, we developed a user-friendly website where users, without prior experience, can upload images to obtain alkalinity readings for their water samples. This AI-powered, equipment-free technology represents a significant milestone in water quality monitoring, deviating from the trend of developing increasingly advanced analytical techniques and serving as a foundation for developing similar methods across various water quality parameters and broader analytical applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Eco-Environment & Health
Eco-Environment & Health 环境科学与生态学-生态、环境与健康
CiteScore
11.00
自引率
0.00%
发文量
18
审稿时长
22 days
期刊介绍: Eco-Environment & Health (EEH) is an international and multidisciplinary peer-reviewed journal designed for publications on the frontiers of the ecology, environment and health as well as their related disciplines. EEH focuses on the concept of “One Health” to promote green and sustainable development, dealing with the interactions among ecology, environment and health, and the underlying mechanisms and interventions. Our mission is to be one of the most important flagship journals in the field of environmental health. Scopes EEH covers a variety of research areas, including but not limited to ecology and biodiversity conservation, environmental behaviors and bioprocesses of emerging contaminants, human exposure and health effects, and evaluation, management and regulation of environmental risks. The key topics of EEH include: 1) Ecology and Biodiversity Conservation Biodiversity Ecological restoration Ecological safety Protected area 2) Environmental and Biological Fate of Emerging Contaminants Environmental behaviors Environmental processes Environmental microbiology 3) Human Exposure and Health Effects Environmental toxicology Environmental epidemiology Environmental health risk Food safety 4) Evaluation, Management and Regulation of Environmental Risks Chemical safety Environmental policy Health policy Health economics Environmental remediation
期刊最新文献
Enhanced As(III) adsorption-oxidation via synergistic interactions between bacteria and goethite Ambient air pollution exposure in relation to cerebral small vessel disease in Chinese population: A cranial magnetic resonance imaging-based study Influence of regional environmental variables on the radiative forcing of atmospheric microplastics From submission to publication: An editor's perspective on why Eco-Environment & Health stands out Effortless alkalinity analysis using AI and smartphone technology, no equipment needed, from freshwater to saltwater
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1