An adjusted droplet digital PCR assay for quantification of vector copy number in CAR-T cell and TCR-T cell products

J. Ma , S. Meyer , J. Olweus , C. Jin , D. Yu
{"title":"An adjusted droplet digital PCR assay for quantification of vector copy number in CAR-T cell and TCR-T cell products","authors":"J. Ma ,&nbsp;S. Meyer ,&nbsp;J. Olweus ,&nbsp;C. Jin ,&nbsp;D. Yu","doi":"10.1016/j.iotech.2024.101031","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Genetically engineered T-cell therapy holds immense promise in cancer immunotherapy. These T-cell products are typically engineered by vectors that permanently integrate into the T-cell genome, thus raising concerns about potential risks of insertional mutagenesis. Therefore, it becomes imperative to assess the integrated vector copy number (VCN) as a critical safety parameter for gene-engineered cell products.</div></div><div><h3>Materials and methods</h3><div>In this study, we developed a robust assay for assessing the VCN of chimeric antigen receptor-T cell and T-cell receptor T-cell products, based on the droplet digital polymerase chain reaction (ddPCR) method. To provide accurate representation of the VCN in gene-engineered cells, we implemented a calculation that factors in the putative transduction efficiency based on Poisson distribution statistics. The adjusted VCN value (VCN<sub>adj</sub>) was also compared with VCN value from sorted transgene-positive cell populations, to validate its accuracy.</div></div><div><h3>Results</h3><div>This assay consistently and accurately determines the average VCN for cell products. By comparing the VCN in sorted transgene-positive cell populations, we validated the refinement calculation provides a closer approximation to the actual VCN within transduced cells, offering a more realistic representation of the VCN for engineered cell products.</div></div><div><h3>Conclusion</h3><div>In summary, we present a reliable and robust ddPCR-based assay for quantification of VCN in gene-engineered cell products.</div></div>","PeriodicalId":73352,"journal":{"name":"Immuno-oncology technology","volume":"25 ","pages":"Article 101031"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immuno-oncology technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590018824003289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Genetically engineered T-cell therapy holds immense promise in cancer immunotherapy. These T-cell products are typically engineered by vectors that permanently integrate into the T-cell genome, thus raising concerns about potential risks of insertional mutagenesis. Therefore, it becomes imperative to assess the integrated vector copy number (VCN) as a critical safety parameter for gene-engineered cell products.

Materials and methods

In this study, we developed a robust assay for assessing the VCN of chimeric antigen receptor-T cell and T-cell receptor T-cell products, based on the droplet digital polymerase chain reaction (ddPCR) method. To provide accurate representation of the VCN in gene-engineered cells, we implemented a calculation that factors in the putative transduction efficiency based on Poisson distribution statistics. The adjusted VCN value (VCNadj) was also compared with VCN value from sorted transgene-positive cell populations, to validate its accuracy.

Results

This assay consistently and accurately determines the average VCN for cell products. By comparing the VCN in sorted transgene-positive cell populations, we validated the refinement calculation provides a closer approximation to the actual VCN within transduced cells, offering a more realistic representation of the VCN for engineered cell products.

Conclusion

In summary, we present a reliable and robust ddPCR-based assay for quantification of VCN in gene-engineered cell products.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.40
自引率
0.00%
发文量
0
期刊最新文献
Potentiating intratumoral therapy with immune checkpoint inhibitors: shifting the paradigm of multimodality therapeutics An adjusted droplet digital PCR assay for quantification of vector copy number in CAR-T cell and TCR-T cell products Preclinical data and design of a phase I clinical trial of neoantigen-reactive TILs for advanced epithelial or ICB-resistant solid cancers Table of Contents Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1