Exploring NIR spectroscopy data: A practical chemometric tutorial for analyzing freeze-dried pharmaceutical formulations

IF 3.7 2区 化学 Q2 AUTOMATION & CONTROL SYSTEMS Chemometrics and Intelligent Laboratory Systems Pub Date : 2024-11-30 DOI:10.1016/j.chemolab.2024.105291
Ambra Massei , Nicola Cavallini , Francesco Savorani , Nunzia Falco , Davide Fissore
{"title":"Exploring NIR spectroscopy data: A practical chemometric tutorial for analyzing freeze-dried pharmaceutical formulations","authors":"Ambra Massei ,&nbsp;Nicola Cavallini ,&nbsp;Francesco Savorani ,&nbsp;Nunzia Falco ,&nbsp;Davide Fissore","doi":"10.1016/j.chemolab.2024.105291","DOIUrl":null,"url":null,"abstract":"<div><div>Chemometrics tools are of fundamental importance for data analysis in the pharmaceutical field, especially with the increasingly strong assertion of the Process Analytical Technologies (PAT). In fact, analytical technologies such as Near-Infrared or Raman spectroscopies generate a lot of data, the spectra, that must be analyzed in a proper way. Typically, it is quite difficult to deeply understand the information hidden within the raw data. Therefore, careful, and efficient data exploration is needed to highlight the chemical and physical features of the analyzed samples.</div><div>Here, a tutorial on all the fundamental steps and concepts needed to perform a proper data analysis based on a case-study of different freeze-dried formulations in the pharmaceutical field is proposed. The data analysis pipeline begins with the dataset explanation, to better point out the main known differences and similarities among the investigated formulations. After the first step of data preprocessing, Principal Component Analysis (PCA), Partial Least Squares (PLS) for regression, and Partial Least Squares-Discriminant Analysis (PLS-DA) for classification are presented and applied to show how to obtain deep comprehension of the real-case NIR dataset at hand. The experimental results demonstrate that trends related to increasing levels of sucrose and/or arginine, as well as distinct clusters related to the sample type and to the operator who conducted the analysis can be found and modelled in the example data.</div><div>The tutorial aims at providing clear practical steps to conduct a robust data analysis, starting from the extraction and organization of the raw data, up to building more advanced predictive models (regression and classification). At each step some key questions are asked and answered to stimulate critical thinking in the reader. Also, commented MATLAB scripts are provided together with the real-case example NIR data, so that anyone could reproduce the whole data analysis in the tutorial, and try first hand to work with the data.</div></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"257 ","pages":"Article 105291"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169743924002314","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Chemometrics tools are of fundamental importance for data analysis in the pharmaceutical field, especially with the increasingly strong assertion of the Process Analytical Technologies (PAT). In fact, analytical technologies such as Near-Infrared or Raman spectroscopies generate a lot of data, the spectra, that must be analyzed in a proper way. Typically, it is quite difficult to deeply understand the information hidden within the raw data. Therefore, careful, and efficient data exploration is needed to highlight the chemical and physical features of the analyzed samples.
Here, a tutorial on all the fundamental steps and concepts needed to perform a proper data analysis based on a case-study of different freeze-dried formulations in the pharmaceutical field is proposed. The data analysis pipeline begins with the dataset explanation, to better point out the main known differences and similarities among the investigated formulations. After the first step of data preprocessing, Principal Component Analysis (PCA), Partial Least Squares (PLS) for regression, and Partial Least Squares-Discriminant Analysis (PLS-DA) for classification are presented and applied to show how to obtain deep comprehension of the real-case NIR dataset at hand. The experimental results demonstrate that trends related to increasing levels of sucrose and/or arginine, as well as distinct clusters related to the sample type and to the operator who conducted the analysis can be found and modelled in the example data.
The tutorial aims at providing clear practical steps to conduct a robust data analysis, starting from the extraction and organization of the raw data, up to building more advanced predictive models (regression and classification). At each step some key questions are asked and answered to stimulate critical thinking in the reader. Also, commented MATLAB scripts are provided together with the real-case example NIR data, so that anyone could reproduce the whole data analysis in the tutorial, and try first hand to work with the data.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.50
自引率
7.70%
发文量
169
审稿时长
3.4 months
期刊介绍: Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines. Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data. The journal deals with the following topics: 1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.) 2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered. 3) Development of new software that provides novel tools or truly advances the use of chemometrical methods. 4) Well characterized data sets to test performance for the new methods and software. The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.
期刊最新文献
Improved salp swarm optimization algorithm based on a robust search strategy and a novel local search algorithm for feature selection problems Classification of aluminum alloy using laser-induced breakdown spectroscopy combined with discriminative restricted Boltzmann machine Optimising thermal performance of water-based hybrid nanofluids with magnetic and radiative effects over a spinning disc A new class of unit models with a quantile regression approach applied to contamination data Design of Poly(lactic-co-glycolic acid) nanoparticles in drug delivery by artificial intelligence methods to find the conditions of nanoparticles synthesis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1