Photophoretic forces in coated-hollow microspheres

IF 3.9 3区 环境科学与生态学 Q2 ENGINEERING, CHEMICAL Journal of Aerosol Science Pub Date : 2025-02-01 DOI:10.1016/j.jaerosci.2024.106510
D.J.S. Pereira, M.R.O. Panão
{"title":"Photophoretic forces in coated-hollow microspheres","authors":"D.J.S. Pereira,&nbsp;M.R.O. Panão","doi":"10.1016/j.jaerosci.2024.106510","DOIUrl":null,"url":null,"abstract":"<div><div>Photophoresis is a phenomenon that generates thermally induced forces on microparticles immersed in a gas when exposed to a light beam such as a laser. Enhancing photophoretic forces depends on the alignment of the geometrical, thermal, and optical properties of the particles. The hypothesis explored here considers coated hollow microspheres to be a promising approach to this challenge. Therefore, we first present a photophoresis model for a three-layered microsphere in the slip-flow regime by applying Navier–Stokes equations with corrected boundary conditions. The numerical approaches used to compute the heat source function <span><math><msub><mrow><mi>q</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> consider the Lorenz–Mie theory, and validate the results with those of previous studies. When applied to a copper-coated glass bubble, the model analyzes the photophoretic force as a function of the coating thickness considering several shell thicknesses. The results indicate that nanometric-scale coatings initially enhance the force to a maximum, beyond which the high thermal conductivity of copper leads to a reduction in the force. For coatings with thicknesses above <span><math><mrow><mn>100</mn></mrow></math></span> nm, the force becomes insensitive to the shell thickness, demonstrating the dominance of copper in optical and thermal phenomena. Suppose that the fabrication of an optimal coating thickness cannot be precisely achieved. This study suggests depositing excess coating to ensure higher photophoretic forces, thereby providing a framework for optimizing the microparticle design in photophoretic applications. Future work will include validation through experiments and finding analytical solutions for integrals associated with internal heat generation using the Lorenz–Mie theory, which holds great promise for advancing our understanding of photophoresis.</div></div>","PeriodicalId":14880,"journal":{"name":"Journal of Aerosol Science","volume":"184 ","pages":"Article 106510"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aerosol Science","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021850224001770","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Photophoresis is a phenomenon that generates thermally induced forces on microparticles immersed in a gas when exposed to a light beam such as a laser. Enhancing photophoretic forces depends on the alignment of the geometrical, thermal, and optical properties of the particles. The hypothesis explored here considers coated hollow microspheres to be a promising approach to this challenge. Therefore, we first present a photophoresis model for a three-layered microsphere in the slip-flow regime by applying Navier–Stokes equations with corrected boundary conditions. The numerical approaches used to compute the heat source function qg consider the Lorenz–Mie theory, and validate the results with those of previous studies. When applied to a copper-coated glass bubble, the model analyzes the photophoretic force as a function of the coating thickness considering several shell thicknesses. The results indicate that nanometric-scale coatings initially enhance the force to a maximum, beyond which the high thermal conductivity of copper leads to a reduction in the force. For coatings with thicknesses above 100 nm, the force becomes insensitive to the shell thickness, demonstrating the dominance of copper in optical and thermal phenomena. Suppose that the fabrication of an optimal coating thickness cannot be precisely achieved. This study suggests depositing excess coating to ensure higher photophoretic forces, thereby providing a framework for optimizing the microparticle design in photophoretic applications. Future work will include validation through experiments and finding analytical solutions for integrals associated with internal heat generation using the Lorenz–Mie theory, which holds great promise for advancing our understanding of photophoresis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Aerosol Science
Journal of Aerosol Science 环境科学-工程:化工
CiteScore
8.80
自引率
8.90%
发文量
127
审稿时长
35 days
期刊介绍: Founded in 1970, the Journal of Aerosol Science considers itself the prime vehicle for the publication of original work as well as reviews related to fundamental and applied aerosol research, as well as aerosol instrumentation. Its content is directed at scientists working in engineering disciplines, as well as physics, chemistry, and environmental sciences. The editors welcome submissions of papers describing recent experimental, numerical, and theoretical research related to the following topics: 1. Fundamental Aerosol Science. 2. Applied Aerosol Science. 3. Instrumentation & Measurement Methods.
期刊最新文献
ToF-SIMS analyses of brake wear particles in human epithelial Caco-2 cells Condensational growth of spherical water droplets altered under external electric fields The impact of environmental aging processing on bioaerosol detection using circular intensity differential scattering (CIDS) Performance evaluation of a miniature UV particle charger Aerosol hygroscopicity influenced by seasonal chemical composition variations in the Arctic region
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1