{"title":"Mechanical properties and microscopic research of different types of bentonite in conjunction with cement and fine sand","authors":"Zheyuan Feng , Zhibo Zhang , Qiang Tang , Yu Zhou","doi":"10.1016/j.sandf.2025.101573","DOIUrl":null,"url":null,"abstract":"<div><div>This study delves into the mechanical properties and mechanisms of bentonite-modified cement soil, a reinforced material formed through the physicochemical reactions of cement, soil, and water. Recognizing the material’s widespread application in foundation treatment, slope reinforcement, and seepage control, alongside the environmental pressures of cement production, this research explores the potential of bentonite as a partial cement substitute. Through indoor unconfined compressive strength and permeability tests, varied by curing age, bentonite type, and mix ratio, the study assesses the impact of these factors on the material’s performance. Microscopic analyses further elucidate the intrinsic mechanisms at play. Key findings include: a non-linear relationship between bentonite content and modified cement soil strength, with sodium-based bentonite enhancing strength more effectively than calcium-based; a significant reduction in permeability coefficient with increased bentonite content, particularly with sodium-based bentonite; and a detailed examination of the material’s microstructure, revealing the critical role of cement and bentonite content in pore reduction and strength enhancement. The study underscores the paramount influence of cement content on both strength and permeability, proposing a prioritized framework for optimizing modified cement soil’s performance.</div></div>","PeriodicalId":21857,"journal":{"name":"Soils and Foundations","volume":"65 2","pages":"Article 101573"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soils and Foundations","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038080625000071","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study delves into the mechanical properties and mechanisms of bentonite-modified cement soil, a reinforced material formed through the physicochemical reactions of cement, soil, and water. Recognizing the material’s widespread application in foundation treatment, slope reinforcement, and seepage control, alongside the environmental pressures of cement production, this research explores the potential of bentonite as a partial cement substitute. Through indoor unconfined compressive strength and permeability tests, varied by curing age, bentonite type, and mix ratio, the study assesses the impact of these factors on the material’s performance. Microscopic analyses further elucidate the intrinsic mechanisms at play. Key findings include: a non-linear relationship between bentonite content and modified cement soil strength, with sodium-based bentonite enhancing strength more effectively than calcium-based; a significant reduction in permeability coefficient with increased bentonite content, particularly with sodium-based bentonite; and a detailed examination of the material’s microstructure, revealing the critical role of cement and bentonite content in pore reduction and strength enhancement. The study underscores the paramount influence of cement content on both strength and permeability, proposing a prioritized framework for optimizing modified cement soil’s performance.
期刊介绍:
Soils and Foundations is one of the leading journals in the field of soil mechanics and geotechnical engineering. It is the official journal of the Japanese Geotechnical Society (JGS)., The journal publishes a variety of original research paper, technical reports, technical notes, as well as the state-of-the-art reports upon invitation by the Editor, in the fields of soil and rock mechanics, geotechnical engineering, and environmental geotechnics. Since the publication of Volume 1, No.1 issue in June 1960, Soils and Foundations will celebrate the 60th anniversary in the year of 2020.
Soils and Foundations welcomes theoretical as well as practical work associated with the aforementioned field(s). Case studies that describe the original and interdisciplinary work applicable to geotechnical engineering are particularly encouraged. Discussions to each of the published articles are also welcomed in order to provide an avenue in which opinions of peers may be fed back or exchanged. In providing latest expertise on a specific topic, one issue out of six per year on average was allocated to include selected papers from the International Symposia which were held in Japan as well as overseas.