Intelligent control system based on BIM visualization for indoor thermal energy regulation: A dynamic architectural design scheme

IF 5.1 3区 工程技术 Q2 ENERGY & FUELS Thermal Science and Engineering Progress Pub Date : 2025-01-27 DOI:10.1016/j.tsep.2025.103315
Zinan Zou , Sijia Wang
{"title":"Intelligent control system based on BIM visualization for indoor thermal energy regulation: A dynamic architectural design scheme","authors":"Zinan Zou ,&nbsp;Sijia Wang","doi":"10.1016/j.tsep.2025.103315","DOIUrl":null,"url":null,"abstract":"<div><div>With the impact of global climate change and the continuous increase in energy consumption, the thermal energy regulation of indoor environments has become an important issue in the field of architectural design. This article aims to explore the application of intelligent control systems based on BIM (Building Information Modeling) visualization in indoor thermal energy regulation, and propose a dynamic building design scheme to optimize indoor comfort and energy efficiency. The study pointed out the shortcomings of existing indoor environmental conditioning systems in terms of flexibility and energy efficiency. On this basis, an intelligent control system based on BIM visualization was designed, whose framework and functions include real-time data collection, analysis, and feedback to enhance the system’s control capabilities. Real time monitoring and optimization adjustment of indoor environment have been achieved through BIM visualization design method. The system test results show that the intelligent control system significantly improves efficiency in thermal energy regulation and reduces energy consumption. In order to further promote the energy-saving design of dynamic buildings, this project studied the process of dynamic building design, including the integration of environmental analysis and user needs. At the same time, a method for dynamic building environment optimization control was proposed, which achieved comprehensive management of building energy consumption through joint simulation of daylighting energy consumption. This study indicates that dynamic building design can effectively respond to environmental changes and improve the overall energy efficiency of buildings.</div></div>","PeriodicalId":23062,"journal":{"name":"Thermal Science and Engineering Progress","volume":"59 ","pages":"Article 103315"},"PeriodicalIF":5.1000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Science and Engineering Progress","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451904925001052","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

With the impact of global climate change and the continuous increase in energy consumption, the thermal energy regulation of indoor environments has become an important issue in the field of architectural design. This article aims to explore the application of intelligent control systems based on BIM (Building Information Modeling) visualization in indoor thermal energy regulation, and propose a dynamic building design scheme to optimize indoor comfort and energy efficiency. The study pointed out the shortcomings of existing indoor environmental conditioning systems in terms of flexibility and energy efficiency. On this basis, an intelligent control system based on BIM visualization was designed, whose framework and functions include real-time data collection, analysis, and feedback to enhance the system’s control capabilities. Real time monitoring and optimization adjustment of indoor environment have been achieved through BIM visualization design method. The system test results show that the intelligent control system significantly improves efficiency in thermal energy regulation and reduces energy consumption. In order to further promote the energy-saving design of dynamic buildings, this project studied the process of dynamic building design, including the integration of environmental analysis and user needs. At the same time, a method for dynamic building environment optimization control was proposed, which achieved comprehensive management of building energy consumption through joint simulation of daylighting energy consumption. This study indicates that dynamic building design can effectively respond to environmental changes and improve the overall energy efficiency of buildings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Thermal Science and Engineering Progress
Thermal Science and Engineering Progress Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
7.20
自引率
10.40%
发文量
327
审稿时长
41 days
期刊介绍: Thermal Science and Engineering Progress (TSEP) publishes original, high-quality research articles that span activities ranging from fundamental scientific research and discussion of the more controversial thermodynamic theories, to developments in thermal engineering that are in many instances examples of the way scientists and engineers are addressing the challenges facing a growing population – smart cities and global warming – maximising thermodynamic efficiencies and minimising all heat losses. It is intended that these will be of current relevance and interest to industry, academia and other practitioners. It is evident that many specialised journals in thermal and, to some extent, in fluid disciplines tend to focus on topics that can be classified as fundamental in nature, or are ‘applied’ and near-market. Thermal Science and Engineering Progress will bridge the gap between these two areas, allowing authors to make an easy choice, should they or a journal editor feel that their papers are ‘out of scope’ when considering other journals. The range of topics covered by Thermal Science and Engineering Progress addresses the rapid rate of development being made in thermal transfer processes as they affect traditional fields, and important growth in the topical research areas of aerospace, thermal biological and medical systems, electronics and nano-technologies, renewable energy systems, food production (including agriculture), and the need to minimise man-made thermal impacts on climate change. Review articles on appropriate topics for TSEP are encouraged, although until TSEP is fully established, these will be limited in number. Before submitting such articles, please contact one of the Editors, or a member of the Editorial Advisory Board with an outline of your proposal and your expertise in the area of your review.
期刊最新文献
A novel type of borehole heat exchanger wrapped with shape-stabilized phase change material EMG sensor and infrared thermal radiation image analysis in martial arts training activities: Muscle thermodynamic simulation Infrared thermal image detection and facial expression recognition based on genetic algorithm in sports prediction simulation: Sports thermal modeling Infrared thermal radiation image defect detection and expression recognition application in badminton monitoring process Experimental study on the effect of N2/CO2 on the wave evolution process and flame development of methane deflagration flow field
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1