Low-light image enhancement via improved lightweight YUV attention network

IF 2.5 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Computers & Graphics-Uk Pub Date : 2025-01-18 DOI:10.1016/j.cag.2025.104170
Mohammed Y. Abbass, H. Kasban, Zeinab F. Elsharkawy
{"title":"Low-light image enhancement via improved lightweight YUV attention network","authors":"Mohammed Y. Abbass,&nbsp;H. Kasban,&nbsp;Zeinab F. Elsharkawy","doi":"10.1016/j.cag.2025.104170","DOIUrl":null,"url":null,"abstract":"<div><div>Deep learning approaches have notable results in the area of computer vision applications. Our paper presents improved LYT-Net, a Lightweight YUV Transformer-based models, as an innovative method to improve low-light scenes. Unlike traditional Retinex-based methods, the proposed framework utilizes the chrominance (U and V) and luminance (Y) channels in YUV color-space, mitigating the complexity between color details and light in scenes. LYT-Net provides a thorough contextual realization of the image while keeping architecture burdens low. In order to tackle the issue of weak feature generation of traditional Channel-wise Denoiser (CWD) Block, improved CWD is proposed using Triplet Attention network. Triplet Attention network is exploited to capture both dynamics and static features. Qualitative and quantitative experiments demonstrate that the proposed technique effectively addresses images with varying exposure levels and outperforms state-of-the-art techniques. Furthermore, the proposed technique shows faster computational performance compared to other Retinex-based techniques, promoting it as a suitable option for real-time computer vision topics.</div><div>The source code is available at <span><span>https://github.com/Mohammed-Abbass/YUV-Attention</span><svg><path></path></svg></span></div></div>","PeriodicalId":50628,"journal":{"name":"Computers & Graphics-Uk","volume":"127 ","pages":"Article 104170"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Graphics-Uk","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097849325000093","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning approaches have notable results in the area of computer vision applications. Our paper presents improved LYT-Net, a Lightweight YUV Transformer-based models, as an innovative method to improve low-light scenes. Unlike traditional Retinex-based methods, the proposed framework utilizes the chrominance (U and V) and luminance (Y) channels in YUV color-space, mitigating the complexity between color details and light in scenes. LYT-Net provides a thorough contextual realization of the image while keeping architecture burdens low. In order to tackle the issue of weak feature generation of traditional Channel-wise Denoiser (CWD) Block, improved CWD is proposed using Triplet Attention network. Triplet Attention network is exploited to capture both dynamics and static features. Qualitative and quantitative experiments demonstrate that the proposed technique effectively addresses images with varying exposure levels and outperforms state-of-the-art techniques. Furthermore, the proposed technique shows faster computational performance compared to other Retinex-based techniques, promoting it as a suitable option for real-time computer vision topics.
The source code is available at https://github.com/Mohammed-Abbass/YUV-Attention

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Graphics-Uk
Computers & Graphics-Uk 工程技术-计算机:软件工程
CiteScore
5.30
自引率
12.00%
发文量
173
审稿时长
38 days
期刊介绍: Computers & Graphics is dedicated to disseminate information on research and applications of computer graphics (CG) techniques. The journal encourages articles on: 1. Research and applications of interactive computer graphics. We are particularly interested in novel interaction techniques and applications of CG to problem domains. 2. State-of-the-art papers on late-breaking, cutting-edge research on CG. 3. Information on innovative uses of graphics principles and technologies. 4. Tutorial papers on both teaching CG principles and innovative uses of CG in education.
期刊最新文献
Multi-scale wavelet feature fusion network for low-light image enhancement Visual comfort and depth perception measurement for stereoscopic image retargeting quality assessment Bi-Scale density-plot enhancement based on variance-aware filter 3D medical model registration using scale-invariant coherent point drift algorithm for AR GEAST-RF: Geometry Enhanced 3D Arbitrary Style Transfer Via Neural Radiance Fields
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1