3D medical model registration using scale-invariant coherent point drift algorithm for AR

IF 2.5 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Computers & Graphics-Uk Pub Date : 2025-02-17 DOI:10.1016/j.cag.2025.104178
Xiaoxing Zhang , Ruifeng Guo , Zhiyong Tong , Hongliang Wang
{"title":"3D medical model registration using scale-invariant coherent point drift algorithm for AR","authors":"Xiaoxing Zhang ,&nbsp;Ruifeng Guo ,&nbsp;Zhiyong Tong ,&nbsp;Hongliang Wang","doi":"10.1016/j.cag.2025.104178","DOIUrl":null,"url":null,"abstract":"<div><div>Registering preoperative 3D medical models to the corresponding regions of the individual in a reality scene is a critical foundation for augmented reality-based (AR-based) surgical navigation systems. A challenge is finding an appropriate spatial mapping function from the medical coordinate system to the AR coordinate system. Our work focuses on registering 3D medical models to the intracranial structures using RGBD point clouds. The mapping function is calculated using local facial features and a scale-invariant coherent point drift (SI-CPD) algorithm that eliminates the scaling parameter. The local facial features significantly reduce mismatched features between the 3D medical models and the RGBD point clouds of the scene, while the proposed SI-CPD algorithm restricts the registration process to translation and rotation operations only. Results demonstrate that our method achieves a target registration error (TRE) of 1.2498 ± 0.0829 mm on private medical datasets and superior registration accuracy on the public Stanford Bunny dataset. Compared to ICP-type methods, the SI-CPD algorithm demonstrates enhanced robustness in handling noise and outliers. Our work introduces a novel methodology to automatically register 3D medical models to the head with high accuracy.</div></div>","PeriodicalId":50628,"journal":{"name":"Computers & Graphics-Uk","volume":"127 ","pages":"Article 104178"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Graphics-Uk","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097849325000172","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Registering preoperative 3D medical models to the corresponding regions of the individual in a reality scene is a critical foundation for augmented reality-based (AR-based) surgical navigation systems. A challenge is finding an appropriate spatial mapping function from the medical coordinate system to the AR coordinate system. Our work focuses on registering 3D medical models to the intracranial structures using RGBD point clouds. The mapping function is calculated using local facial features and a scale-invariant coherent point drift (SI-CPD) algorithm that eliminates the scaling parameter. The local facial features significantly reduce mismatched features between the 3D medical models and the RGBD point clouds of the scene, while the proposed SI-CPD algorithm restricts the registration process to translation and rotation operations only. Results demonstrate that our method achieves a target registration error (TRE) of 1.2498 ± 0.0829 mm on private medical datasets and superior registration accuracy on the public Stanford Bunny dataset. Compared to ICP-type methods, the SI-CPD algorithm demonstrates enhanced robustness in handling noise and outliers. Our work introduces a novel methodology to automatically register 3D medical models to the head with high accuracy.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Graphics-Uk
Computers & Graphics-Uk 工程技术-计算机:软件工程
CiteScore
5.30
自引率
12.00%
发文量
173
审稿时长
38 days
期刊介绍: Computers & Graphics is dedicated to disseminate information on research and applications of computer graphics (CG) techniques. The journal encourages articles on: 1. Research and applications of interactive computer graphics. We are particularly interested in novel interaction techniques and applications of CG to problem domains. 2. State-of-the-art papers on late-breaking, cutting-edge research on CG. 3. Information on innovative uses of graphics principles and technologies. 4. Tutorial papers on both teaching CG principles and innovative uses of CG in education.
期刊最新文献
Multi-scale wavelet feature fusion network for low-light image enhancement Visual comfort and depth perception measurement for stereoscopic image retargeting quality assessment Bi-Scale density-plot enhancement based on variance-aware filter 3D medical model registration using scale-invariant coherent point drift algorithm for AR GEAST-RF: Geometry Enhanced 3D Arbitrary Style Transfer Via Neural Radiance Fields
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1