Novel explicit models for assessing the frictional resistance of pipe piles subjected to seismic effects

IF 3.7 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH 安全科学与韧性(英文) Pub Date : 2024-08-15 DOI:10.1016/j.jnlssr.2024.06.010
Duaa Al-Jeznawi , Laith Sadik , Saif Alzabeebee , Musab Aied Qissab Al-Janabi , Suraparb Keawsawasvong
{"title":"Novel explicit models for assessing the frictional resistance of pipe piles subjected to seismic effects","authors":"Duaa Al-Jeznawi ,&nbsp;Laith Sadik ,&nbsp;Saif Alzabeebee ,&nbsp;Musab Aied Qissab Al-Janabi ,&nbsp;Suraparb Keawsawasvong","doi":"10.1016/j.jnlssr.2024.06.010","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces novel explicit models to predict the frictional resistance of open and closed-ended pipe piles subjected to seismic loading. This research employs genetic programming (GP) and multiobjective genetic algorithm-based evolutionary polynomial regression (EPR-MOGA) to develop closed-form expressions for estimating pile frictional resistance, utilizing widely used input parameters for enhanced practicality and applicability in engineering practice. The proposed models are developed using only three input variables: the corrected standard penetration test (SPT) blow count (<em>N</em><sub>1</sub>)<sub>60</sub>, the pile slenderness ratio (<em>L</em>/<em>D</em>), and the peak ground acceleration (PGA). This deliberate reduction in input complexity significantly enhances the models' applicability across a wide range of geotechnical scenarios and industries. The accuracy of the developed models was assessed via the coefficient of determination (<em>R</em><sup>2</sup>), root mean squared error (RMSE), and mean absolute error (MAE). In the case of the GP model, the evaluation metrics for the testing set for open-ended piles (<em>R</em><sup>2</sup>, RMSE, and MAE values) are 0.89, 0.43, and 0.35, respectively, whereas the corresponding values for closed-ended piles are 0.93, 0.38, and 0.3, respectively. On the other hand, the EPR-MOGA approach achieves similarly encouraging results, with performance metrics of 0.92, 0.37, and 0.29 for open-ended piles and 0.91, 0.39, and 0.30 for closed-ended piles.</div></div>","PeriodicalId":62710,"journal":{"name":"安全科学与韧性(英文)","volume":"6 1","pages":"Pages 29-37"},"PeriodicalIF":3.7000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"安全科学与韧性(英文)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666449624000537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces novel explicit models to predict the frictional resistance of open and closed-ended pipe piles subjected to seismic loading. This research employs genetic programming (GP) and multiobjective genetic algorithm-based evolutionary polynomial regression (EPR-MOGA) to develop closed-form expressions for estimating pile frictional resistance, utilizing widely used input parameters for enhanced practicality and applicability in engineering practice. The proposed models are developed using only three input variables: the corrected standard penetration test (SPT) blow count (N1)60, the pile slenderness ratio (L/D), and the peak ground acceleration (PGA). This deliberate reduction in input complexity significantly enhances the models' applicability across a wide range of geotechnical scenarios and industries. The accuracy of the developed models was assessed via the coefficient of determination (R2), root mean squared error (RMSE), and mean absolute error (MAE). In the case of the GP model, the evaluation metrics for the testing set for open-ended piles (R2, RMSE, and MAE values) are 0.89, 0.43, and 0.35, respectively, whereas the corresponding values for closed-ended piles are 0.93, 0.38, and 0.3, respectively. On the other hand, the EPR-MOGA approach achieves similarly encouraging results, with performance metrics of 0.92, 0.37, and 0.29 for open-ended piles and 0.91, 0.39, and 0.30 for closed-ended piles.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
安全科学与韧性(英文)
安全科学与韧性(英文) Management Science and Operations Research, Safety, Risk, Reliability and Quality, Safety Research
CiteScore
8.70
自引率
0.00%
发文量
0
审稿时长
72 days
期刊最新文献
A data fusion-based method for pedestrian detection and flow statistics across different crowd densities A systematic review of safety risk assessment research in China An efficient and resilience linear prefix approach for mining maximal frequent itemset using clustering Grasping emergency dynamics: A review of group evacuation techniques and strategies in major emergencies Effects of firefighters’ protective gloves on physiological responses, psychological responses, and manual performance in a cold environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1