Engineering stable Ti3+ defects in a titanium dioxide matrix by wet bead-milling: Visible-light assisted efficient photocatalytic hydrogen production from water

Shoichi Somekawa , Sayaka Yanagida , Naoki Tachibana , Hiroaki Imai , Shigeru Nakazawa
{"title":"Engineering stable Ti3+ defects in a titanium dioxide matrix by wet bead-milling: Visible-light assisted efficient photocatalytic hydrogen production from water","authors":"Shoichi Somekawa ,&nbsp;Sayaka Yanagida ,&nbsp;Naoki Tachibana ,&nbsp;Hiroaki Imai ,&nbsp;Shigeru Nakazawa","doi":"10.1016/j.crgsc.2024.100423","DOIUrl":null,"url":null,"abstract":"<div><div>Solar-driven hydrogen production technologies are of increasing interest. In this work, Ti<sup>3+</sup> was incorporated into titanium dioxide via wet bead-milling, resulting in enhanced photocatalytic activity under both UV and visible light irradiation. The broad optical absorption obtained from the presence of Ti<sup>3+</sup> ranged from the visible to near-infrared regions of the spectrum (specifically from 400 to over 900 nm) and this absorption could be enhanced by increasing the diameter of the beads used for wet milling. The hydrogen production rate from water in response to ultraviolet (UV)-visible light with ethanol as a sacrificial reagent was also found to vary depending on the bead diameter. Producing the optimal level of Ti<sup>3+</sup> incorporation in the titanium oxide matrix while maintaining a high specific surface area increased the extent of hydrogen production during water decomposition. A sample prepared using 0.3 mm diameter beads exhibited the highest hydrogen production rate of 145 μmol h<sup>−1</sup> g<sup>−1</sup>, which was 15 times that obtained from commercially available anatase-type titanium dioxide having higher specific surface area. The hydrogen production rate under only UV light (&lt;400 nm) was decreased to one-ninth of that obtained using both UV and visible light simultaneously. No hydrogen gas was generated in trials using only visible light (&gt;410 nm). These results indicate that visible light significantly promoted the photocatalytic reaction when both UV and visible light were irradiated simultaneously.</div></div>","PeriodicalId":296,"journal":{"name":"Current Research in Green and Sustainable Chemistry","volume":"9 ","pages":"Article 100423"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Green and Sustainable Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666086524000286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

Solar-driven hydrogen production technologies are of increasing interest. In this work, Ti3+ was incorporated into titanium dioxide via wet bead-milling, resulting in enhanced photocatalytic activity under both UV and visible light irradiation. The broad optical absorption obtained from the presence of Ti3+ ranged from the visible to near-infrared regions of the spectrum (specifically from 400 to over 900 nm) and this absorption could be enhanced by increasing the diameter of the beads used for wet milling. The hydrogen production rate from water in response to ultraviolet (UV)-visible light with ethanol as a sacrificial reagent was also found to vary depending on the bead diameter. Producing the optimal level of Ti3+ incorporation in the titanium oxide matrix while maintaining a high specific surface area increased the extent of hydrogen production during water decomposition. A sample prepared using 0.3 mm diameter beads exhibited the highest hydrogen production rate of 145 μmol h−1 g−1, which was 15 times that obtained from commercially available anatase-type titanium dioxide having higher specific surface area. The hydrogen production rate under only UV light (<400 nm) was decreased to one-ninth of that obtained using both UV and visible light simultaneously. No hydrogen gas was generated in trials using only visible light (>410 nm). These results indicate that visible light significantly promoted the photocatalytic reaction when both UV and visible light were irradiated simultaneously.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Research in Green and Sustainable Chemistry
Current Research in Green and Sustainable Chemistry Materials Science-Materials Chemistry
CiteScore
11.20
自引率
0.00%
发文量
116
审稿时长
78 days
期刊最新文献
Advancement of Pt and Pd-based catalysis for green, sustainable energy and bio-medical applications Tofu Wastewater Recovery for β-glucan Production by Pichia norvegensis and Candida tropicalis 2-Aminopyridine as a recyclable catalyst for metal-free synthesis of pyrano[2,3-d]pyrimidine scaffolds Enhanced antibacterial activity of Ocimum sanctum leaf extract mediated hydroxyapatite and hydroxyapatite-iron oxide nanocomposites Performance of activated carbon derived from tea twigs for carbon dioxide adsorption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1