Assessing robust prediction models without test datasets: A causal discovery approach on near-infrared spectra

IF 3.7 2区 化学 Q2 AUTOMATION & CONTROL SYSTEMS Chemometrics and Intelligent Laboratory Systems Pub Date : 2024-12-21 DOI:10.1016/j.chemolab.2024.105313
Minh-Quan Nguyen , Mizuki Tsuta , Mito Kokawa
{"title":"Assessing robust prediction models without test datasets: A causal discovery approach on near-infrared spectra","authors":"Minh-Quan Nguyen ,&nbsp;Mizuki Tsuta ,&nbsp;Mito Kokawa","doi":"10.1016/j.chemolab.2024.105313","DOIUrl":null,"url":null,"abstract":"<div><div>Machine learning prediction models calibrated with spectral data use correlations between variables without considering causation. The absence of genuine cause–effect relations hinders the ability to ensure methodical prediction reproducibility. Therefore, tools supporting causal-based discovery are essential in spectroscopy and chemometrics to enhance robustness. Accordingly, this study invokes causal inference theory to establish the causal discovery index (CDI) to distinguish datasets with reliable causal structures from those prone to spurious correlations. This framework was applied to seven simulated near-infrared spectral causal structures. Simulated near-infrared spectra were utilized to ensure that the framework performance was optimized and verified appropriately in a generalized methodology. Reliable structures were confirmed to be differentiated by the differences in the mean and standard deviation of bootstrapped CDI indices. Distinctive thresholds for the mean and standard deviation were established at the sample size of 1000 and 10,000. The framework consistently performed well with multiple spectral preprocessing methods such as derivation and dimension reduction. It was also robust with variations, surpassing the conventional test-set validation method without the use of additional independent datasets. This would benefit the applicability of the novel framework in practical situations where dataset collection can be limited. Moreover, it can be extended to various sensor-based data, encompassing only seven possible causal structures.</div></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"257 ","pages":"Article 105313"},"PeriodicalIF":3.7000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169743924002533","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning prediction models calibrated with spectral data use correlations between variables without considering causation. The absence of genuine cause–effect relations hinders the ability to ensure methodical prediction reproducibility. Therefore, tools supporting causal-based discovery are essential in spectroscopy and chemometrics to enhance robustness. Accordingly, this study invokes causal inference theory to establish the causal discovery index (CDI) to distinguish datasets with reliable causal structures from those prone to spurious correlations. This framework was applied to seven simulated near-infrared spectral causal structures. Simulated near-infrared spectra were utilized to ensure that the framework performance was optimized and verified appropriately in a generalized methodology. Reliable structures were confirmed to be differentiated by the differences in the mean and standard deviation of bootstrapped CDI indices. Distinctive thresholds for the mean and standard deviation were established at the sample size of 1000 and 10,000. The framework consistently performed well with multiple spectral preprocessing methods such as derivation and dimension reduction. It was also robust with variations, surpassing the conventional test-set validation method without the use of additional independent datasets. This would benefit the applicability of the novel framework in practical situations where dataset collection can be limited. Moreover, it can be extended to various sensor-based data, encompassing only seven possible causal structures.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.50
自引率
7.70%
发文量
169
审稿时长
3.4 months
期刊介绍: Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines. Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data. The journal deals with the following topics: 1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.) 2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered. 3) Development of new software that provides novel tools or truly advances the use of chemometrical methods. 4) Well characterized data sets to test performance for the new methods and software. The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.
期刊最新文献
Optimising thermal performance of water-based hybrid nanofluids with magnetic and radiative effects over a spinning disc Design of Poly(lactic-co-glycolic acid) nanoparticles in drug delivery by artificial intelligence methods to find the conditions of nanoparticles synthesis Automatic spectral fitting for LIBS and Raman spectra by boosted deconvolution method Editorial Board Reconstructing spectral shapes with GAN models: A data-driven approach for high-resolution spectra from low-resolution spectrometers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1