Clícia A. Gomes , Carlos José M. da Silva , Maria Tereza W.D. Carneiro , Jefferson R. de Souza , Cibele Maria S. de Almeida
{"title":"DD-SIMCA as an alternative tool to assess the short-term stability of a marine sediment reference material candidate","authors":"Clícia A. Gomes , Carlos José M. da Silva , Maria Tereza W.D. Carneiro , Jefferson R. de Souza , Cibele Maria S. de Almeida","doi":"10.1016/j.chemolab.2024.105312","DOIUrl":null,"url":null,"abstract":"<div><div>The stability test is essential in the production of a reference material (RM). They can be classified as short-term (transport conditions) and long-term (shelf time). The evaluation of the stability test is carried out using the regression method, as indicated by ISO Guide 35. However, some studies have highlighted the use of multivariate methods in the evaluation of tests performed in RM production. Therefore, this work presents the data driven soft independent modeling class analogy (DD-SIMCA) method as a viable alternative for evaluating data from the short-term stability test of a candidate reference material for metal determination with marine sediment matrix. The test was performed isochronously for one month at a temperature of 60 °C. The samples were decomposed (in triplicate) by the EPA 3051 A method and analyzed by inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometry (ICP OES). Samples mass fractions stored at standard temperature (−20 °C) were (mg kg<sup>−1</sup>): 70.4 ± 4.5 for Ba, 12.0 ± 0.7 for Co, 17.9 ± 1.0 for Cu, 60.7 ± 3.3 for Zn, 49137 ± 4790 for Al, and 60021 ± 3090 for Fe. These values were compared with the mass fractions of samples subjected to the test condition (60 °C) for four weeks, which were (mg kg-1): 70.0 ± 4.0 for Ba, 12.1 ± 0.5 for Co, 17.4 ± 0.8 for Cu, 60.6 ± 2.9 for Zn, 48388 ± 3424 for Al, and 58049 ± 1886 for Fe. A comparison was made between the mass fractions from the standard and test conditions by the regression method. The model applied in the DD-SIMCA method was constructed using two principal components, an alpha value and confidence interval of 0.05, and the instrumental quintuplicates of the samples stored at −20 °C. The samples subjected to 60 °C fit the constructed model, indicating that there was no significant difference between the properties of these samples and those that were maintained in reference temperature. The RM candidate was considered stable at a temperature of 60 °C for a period of one month, both by the regression method and by the DD-SIMCA method. The multivariate method DD-SIMCA was considered a possible alternative and confirmatory tool in evaluating the results of testing short-term stability realized during RM production.</div></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"257 ","pages":"Article 105312"},"PeriodicalIF":3.7000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169743924002521","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The stability test is essential in the production of a reference material (RM). They can be classified as short-term (transport conditions) and long-term (shelf time). The evaluation of the stability test is carried out using the regression method, as indicated by ISO Guide 35. However, some studies have highlighted the use of multivariate methods in the evaluation of tests performed in RM production. Therefore, this work presents the data driven soft independent modeling class analogy (DD-SIMCA) method as a viable alternative for evaluating data from the short-term stability test of a candidate reference material for metal determination with marine sediment matrix. The test was performed isochronously for one month at a temperature of 60 °C. The samples were decomposed (in triplicate) by the EPA 3051 A method and analyzed by inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometry (ICP OES). Samples mass fractions stored at standard temperature (−20 °C) were (mg kg−1): 70.4 ± 4.5 for Ba, 12.0 ± 0.7 for Co, 17.9 ± 1.0 for Cu, 60.7 ± 3.3 for Zn, 49137 ± 4790 for Al, and 60021 ± 3090 for Fe. These values were compared with the mass fractions of samples subjected to the test condition (60 °C) for four weeks, which were (mg kg-1): 70.0 ± 4.0 for Ba, 12.1 ± 0.5 for Co, 17.4 ± 0.8 for Cu, 60.6 ± 2.9 for Zn, 48388 ± 3424 for Al, and 58049 ± 1886 for Fe. A comparison was made between the mass fractions from the standard and test conditions by the regression method. The model applied in the DD-SIMCA method was constructed using two principal components, an alpha value and confidence interval of 0.05, and the instrumental quintuplicates of the samples stored at −20 °C. The samples subjected to 60 °C fit the constructed model, indicating that there was no significant difference between the properties of these samples and those that were maintained in reference temperature. The RM candidate was considered stable at a temperature of 60 °C for a period of one month, both by the regression method and by the DD-SIMCA method. The multivariate method DD-SIMCA was considered a possible alternative and confirmatory tool in evaluating the results of testing short-term stability realized during RM production.
期刊介绍:
Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines.
Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data.
The journal deals with the following topics:
1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.)
2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered.
3) Development of new software that provides novel tools or truly advances the use of chemometrical methods.
4) Well characterized data sets to test performance for the new methods and software.
The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.